【題目】如圖所示,△ABC中,AB=BC,DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)D,交AC于F.
⑴若∠AFD=155°,求∠EDF的度數(shù);
⑵若點(diǎn)F是AC的中點(diǎn),求證:∠CFD=∠B.
【答案】(1)50°;(2)見解析
【解析】試題分析:⑴根據(jù)等腰三角形的性質(zhì)、三角形的內(nèi)角和定理與四邊形的內(nèi)角和為360°,可求得所求角的度數(shù).
⑵連接BF,根據(jù)三角形內(nèi)角和定理與等腰三角形三線合一,可知.
試題解析:⑴ ∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,
∴∠FDC=∠AED=90°,
在Rt△EDC中,∴∠C=90°﹣25°=65°,
∵AB=BC,∴∠C=∠A=65°,
∴∠EDF=360°﹣65°﹣155°﹣90°=50°.
⑵ 連接BF,∵AB=BC,且點(diǎn)F是AC的中點(diǎn),
∴BF⊥AC,,
∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,
∴∠CFD=∠CBF,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,O為AC的中點(diǎn),過(guò)點(diǎn)O的直線分別與AB,CD交于點(diǎn)E,F,連接BF交AC于點(diǎn)M,連接DE,BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB∶OE=3∶2.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)D,過(guò)其頂點(diǎn)C作直線CP⊥x軸,垂足為點(diǎn)P,連接AD、BC.
(1)求點(diǎn)A、B、D的坐標(biāo);
(2)若△AOD與△BPC相似,求a的值;
(3)點(diǎn)D、O、C、B能否在同一個(gè)圓上,若能,求出a的值,若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上、、三點(diǎn)所代表的數(shù)分別是、、,且.若下列選項(xiàng)中,有一個(gè)表示、、三點(diǎn)在數(shù)軸上的位置關(guān)系,則此選項(xiàng)為何?( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1∥l2∥l3,等腰直角三角形ABC的三個(gè)頂點(diǎn)A,B,C分別在l1,l2,l3上,∠ACB=90°,AC交l2于點(diǎn)D,已知l1與l2的距離為1,l2與l3的距離為3,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,D 是 AC 邊上一動(dòng)點(diǎn), CE⊥BD 于 E.
(1)如圖(1),若 BD 平分∠ABC 時(shí),①求∠ECD 的度數(shù);②求證:BD=2EC;
(2)如圖(2),過(guò)點(diǎn) A 作 AF⊥BE 于點(diǎn) F,猜想線段 BE,CE,AF 之間的數(shù)量關(guān)系并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖, ,,,,垂足為點(diǎn),點(diǎn)為的中點(diǎn).
(1) 求證:;
(2) 求證:≌;
(3) 聯(lián)結(jié),試判斷與 的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+8與x軸,y軸分別交于點(diǎn)A和B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果兩條線段將一個(gè)三角形分成3個(gè)小等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線,在△ABC中,∠B=30°,AD和 DE是△ABC的三分線,點(diǎn)D在 BC 邊上,點(diǎn)E在 AC邊上,且AD=BD,DE=CE,請(qǐng)寫出∠C所有可能的度數(shù)________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com