【題目】如圖,內接于圓,為直徑,點在圓上,過點作圓的切線與的延長線交于點,點是弧的中點,連結交于點.
(1)求證:;
(2)若,求的長.
【答案】(1)見詳解;(2)
【解析】
(1)連接OD,根據(jù)圓周角定理的推論和等腰三角形的性質可知,再根據(jù)切線的性質和等量代換可知,再利用圓周角定理的推論可知,從而有 ,最后利用同位角相等,兩直線平行即可證明;
(2)連接BD,先根據(jù)勾股定理得出AF的長度,然后根據(jù)直角三角形兩銳角互余和對頂角相等得出,,然后利用銳角三角函數(shù)得出,進而求出AD的長度,最后再利用銳角三角函數(shù)即可求出AB的長度.
(1)連接OD,
∵點是弧的中點,
∴.
∵ ,
∴,
∴.
∵DE是圓的切線,
∴,
,
,
.
∵為直徑,
∴,
∴,
;
(2)連接BD,
∵,
.
,
,
.
∵為直徑,
∴,
.
∵,
.
,
,
,
,
.
,
.
,
.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A,B為反比例函數(shù)y=(k>0,x>0)上的兩個動點,以A,B為頂點構造菱形ABCD.
(1)如圖1,點A,B橫坐標分別為1,4,對角線BD∥x軸,菱形ABCD面積為,求k的值.
(2)如圖2,當點A,B運動至某一時刻,點C,點D恰好落在x軸和y軸正半軸上,此時∠ABC=90°,求點A,B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=(x﹣m)2+2(x﹣m)(m為常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個不同的公共點;
(2)當m取什么值時,該函數(shù)的圖象關于y軸對稱?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,, ,.點是斜邊AB上一個動點.過點作, 垂足為, 交邊(或邊) 于點, 設,的面積為,則與之間的函數(shù)圖象大致為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線的對稱軸為直線,圖象過點,部分圖象如圖所示,下列判斷:①;②;③;④若點,均在拋物線上,則,其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為1,∠A=60,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,…,則四邊形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1(注:與圖2完全相同),在直角坐標系中,拋物線經過點三點,,.
(1)求拋物線的解析式和對稱軸;
(2)是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(請在圖1中探索);
(3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標,若不存在請說明理由.(請在圖2中探索)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線
(1)當時,求拋物線的頂點坐標;
(2)已知點,拋物線與軸交于點(不與重合),將點繞點逆時針旋轉90°至點,
①直接寫出點的坐標(用含的代數(shù)式表示);
②若拋物線與線段有且僅有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠有20名工人,每人每天加工甲種零件5個或乙種零件4個.在這20名工人當中,派x人加工甲種零件,其余的加工乙種零件,已知每加工一個甲種零件可獲利16元,每加工一個乙種零件可以獲利24元.
(1)寫出此工廠每天所獲利潤y(元)與x(人)之間的函數(shù)關系式(只寫出解析式)
(2)若要使工廠每天獲利不低于1800元,問至少要派多少人加工乙種零件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com