精英家教網 > 初中數學 > 題目詳情

【題目】如圖,反比例函數 的圖象與一次函數y=kx+b的圖象相交于兩點A(m,3)和B(﹣3,n).
(1)求一次函數的表達式;
(2)觀察圖象,直接寫出使反比例函數值大于一次函數值的自變量x的取值范圍.

【答案】
(1)解:將A(m,3),B(﹣3,n)分別代入反比例解析式得:3= ,n= ,

解得:m=2,n=﹣2,

∴A(2,3),B(﹣3,﹣2),

將A與B代入一次函數解析式得: ,

解得: ,

則一次函數解析式為y=x+1


(2)解:∵A(2,3),B(﹣3,﹣2),

∴由函數圖象得:反比例函數值大于一次函數值的自變量x的取值范圍為x<﹣3或0<x<2


【解析】(1)將A與B坐標分別代入反比例解析式求出m與n的值,確定出A與B坐標,再將兩點代入一次函數解析式中求出k與b的值,即可確定出一次函數解析式;(2)由A與B的橫坐標,利用函數圖象即可求出滿足題意x的范圍.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】2014年3月31日是全國中小學生安全教育日,某校全體學生參加了“珍愛生命,預防溺水”專題活動,學習了游泳“五不準”,為了了解學生對“五不準”的知曉情況,隨機抽取了200名學生作調查,請根據下面兩個不完整的統(tǒng)計圖解答問題:
(1)求在這次調查中,“能答5條”人數的百分比和“僅能答3條”的人數;
(2)若該校共有2000名學生,估計該校能答3條不準以上(含3條)的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點,與y軸相交于點C,直線y=kx+n(k≠0)經過B,C兩點,已知A(1,0),C(0,3),且BC=5.

(1)分別求直線BC和拋物線的解析式(關系式);
(2)在拋物線的對稱軸上是否存在點P,使得以B,C,P三點為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三個正比例函數的圖象分別對應表達式:①y=ax,②y=bx,③y=cx,將a,b,c從小到大排列并用“<”連接為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B的直線與CD的延長線交于點F,AC∥BF.
(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;
(2)若tan∠F= ,CD=a,請用a表示⊙O的半徑;
(3)求證:GF2﹣GB2=DFGF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一個直三棱柱的立體圖和主視圖、俯視圖,根據立體圖上的尺寸標注,它的左視圖的面積為(
A.24
B.30
C.18
D.14.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某批發(fā)市場有中招考試文具套裝,其中A品牌的批發(fā)價是每套20元,B品牌的批發(fā)價是每套25元,小王需購買A、B兩種品牌的文具套裝共1000套.
(1)若小王按需購買A、B兩種品牌文具套裝共用22000元,則各購買多少套?
(2)憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為500元.若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了y元,設A品牌文具套裝買了x包,請求出y與x之間的函數關系式.
(3)若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了20000元,他計劃在網店包郵銷售這兩種文具套裝,每套文具套裝小王需支付郵費8元,若A品牌每套銷售價格比B品牌少5元,請你幫他計算,A品牌的文具套裝每套定價不低于多少元時才不虧本(運算結果取整數)?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B 兩點分別在x 軸和y 軸上,OA=1,OB= ,連接AB,過AB 中點C1 分別作x 軸和y 軸的垂線,垂足分別是點A1、B1 , 連接A1B1 , 再過A1B1中點C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點Cn的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.

請結合以上信息解答下列問題:
(1)m=;
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為;
(4)已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.

查看答案和解析>>

同步練習冊答案