【題目】下列說法:兩條對角線相等的四邊形是矩形;有一組對邊相等,一組對角是直角的四邊形是矩形;有一個角為直角,兩條對角線相等的四邊形是矩形;四個角都相等的四邊形是矩形相鄰兩邊都互相垂直的四邊形是矩形.其中判斷正確的個數(shù)是(

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

由矩形的判定方法得出①③不正確,②④⑤正確,即可得出結(jié)論.

解:①不正確;

∵兩條對角線相等的四邊形不是矩形,

∴①不正確;

②正確;如圖所示:

連接BD,

∵∠A=∠C=90°,

∴△ABD和△CDB是直角三角形,

Rt△ABDRt△CDB中,

∴Rt△ABD≌Rt△CDB(HL),

∴AD=BC,

∴四邊形ABCD是平行四邊形,

∵∠A=90°,

∴四邊形ABCD是矩形,

∴②正確;

③不正確;

∵有一個角為直角,兩條對角線相等的四邊形不是矩形,

∴③不正確;

④正確;

∵四邊形內(nèi)角和=360°,四個角相等,

∴四個角都是直角,

∴四個角都相等的四邊形是矩形,

∴④正確;

⑤正確;

∵相鄰兩邊都互相垂直的四邊形的四個角都是直角,

∴相鄰兩邊都互相垂直的四邊形是矩形,

∴⑤正確;

正確的個數(shù)有3個.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

(1)是一個大于而小于的整數(shù),且方程的兩個根都是有理數(shù),求的值和它的兩個根;

(2)若方程有兩個不相等的實數(shù)根,試判斷另一個關(guān)于的方程的根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標系中,一次函數(shù)ykx2k和二次函數(shù)y=﹣kx2+2x4k是常數(shù)且k≠0)的圖象可能是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算或解方程:

1)計算下列各題

π3.140+(﹣232;

3a12﹣(3a2)(3a+4);

12a5b78a4b64a4b2)÷(﹣2a2b2;

2)解分式方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當(dāng)a取不同的實數(shù)時在得到的代數(shù)式a24a的值中是否存在最小值?請說明理由.

(3)應(yīng)用:如圖.已知線段AB6MAB上的一個動點,設(shè)AMx,以AM為一邊作正方形AMND,再以MBMN為一組鄰邊作長方形MBCN.問:當(dāng)點MAB上運動時,長方形MBCN的面積是否存在最大值?若存在,請求出這個最大值;否則請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C90°,∠BAC的平分線交BCD,且CD15,AC30,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD為正方形,點E為線段AC上一點,連接DE,過點EEF⊥DE,交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長度;

(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時,直接寫出∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點DDEABAB的延長線于點E,DFAC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于點,過點作軸的垂線,垂足為,已知的面積為

求反比例函數(shù)的解析式;

如圖,點為反比例函數(shù)在第三象限圖象上的點,過點作軸的垂線,垂足為,求證:

查看答案和解析>>

同步練習(xí)冊答案