【題目】甲、乙兩車間同時開始加工一批零件,從開始加工到加工完成這批零件,甲車間工作了8個小時,乙車間在中途停工一段時間維修設(shè)備,然后按停工前的工作效率繼續(xù)加工,直到與甲車間同時完成這批零件的加工任務(wù)為止.設(shè)甲、乙兩車間各自加工零件的數(shù)量為(個),甲車間加工的時間為(時),之間的函數(shù)圖象如圖所示.

1)甲車間每小時加工零件的個數(shù)為_________個;這批零件的總個數(shù)為__________個;

2)求乙車間維護(hù)設(shè)備后,乙車間加工零件的數(shù)量之間的函數(shù)關(guān)系式;

3)在加工這批零件的過程中,當(dāng)甲、乙兩車間共同加工完成810個零件時,求甲車間加工的時間.

【答案】175,870;(2;(3)甲車間加工的時間為7.5個小時.

【解析】

1)根據(jù)圖像可知甲8個小時加工了600個零件,乙8個小時加工了270個零件,據(jù)此填空即可;

2)設(shè)之間的函數(shù)關(guān)系式為,由圖像知該函數(shù)過點,利用待定系數(shù)法求解即可;

3)設(shè)甲車間加工了x個小時,根據(jù)甲乙總共加工810個零件列方程求解即可.

解:(1)由圖像得甲8個小時加工了600個零件,(個),

(個),

所以甲車間每小時加工零件的個數(shù)為75個;這批零件的總個數(shù)為870個;

2)設(shè)之間的函數(shù)關(guān)系式為,由圖像知該函數(shù)過點,

將點代入得

解得

所以之間的函數(shù)關(guān)系式為;

3)由圖像得乙的設(shè)備維修了2個小時,乙每小時加工

設(shè)甲車間加工了x個小時,則乙車間加工了個小時

根據(jù)題意得

解得

所以甲車間加工的時間為7.5個小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個反比例函數(shù)在第一象限內(nèi)的圖象如圖所示,點P的圖象上,PC軸于點C,交的圖象于點APC軸于點D,交的圖象于點B. 當(dāng)點P的圖象上運動時,以下結(jié)論:

的值不會發(fā)生變化

PAPB始終相等

④當(dāng)點APC的中點時,點B一定是PD的中點.

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花叢中有一路燈AB,在燈光下,小明在D點處的影長DE=3m,沿BD方向走到G點,DG=5m,這時,小明的影長GH=5m,小明的身高為1.7m.

(1)畫出路燈燈泡A的位置.

(2)求AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特點:

甲:對稱軸為直線x=4

乙:與x軸兩個交點的橫坐標(biāo)都是整數(shù).

丙:與y軸交點的縱坐標(biāo)也是整數(shù),且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數(shù)解析式__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形OABC的頂點Ax軸上,頂點Cy軸上,OA18OC12,DE分別為OA、BC上的兩點,將長方形OABC沿直線DE折疊后,點A剛好與點C重合,點B落在點F處,再將其打開、展平.

1)點B的坐標(biāo)是   ;

2)求直線DE的函數(shù)表達(dá)式;

3)設(shè)動點P從點D出發(fā),以1個單位長度/秒的速度沿折線D→A→B→C向終點C運動,運動時間為t秒,求當(dāng)SPDE2SOCDt的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦校園好聲音朗誦大賽,根據(jù)初賽成績,七年級和八年級各選出5名選手組成七年級代表隊和八年級代表隊參加學(xué)校決賽兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示:

1)根據(jù)所給信息填寫表格;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

七年級

85

八年級

85

100

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)若七年級代表隊決賽成績的方差為70,計算八年級代表隊決賽成績的方差,并判斷哪個代表隊的選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BEAD交于點F.

(1)求證:ABF≌△EDF;

(2)若AB=6,BC=8,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PQ分別是⊙O的內(nèi)接正六邊形ABCDEF的邊AB、BC上的點,AP=BQ,則∠POQ的度數(shù)為___°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】熱愛學(xué)習(xí)的小明同學(xué)在網(wǎng)上搜索到下面的文字材料:

x軸上有兩個點它們的坐標(biāo)分別為(a,0)和(c,0).則這兩個點所成的線段的長為|ac|;同樣,若在y軸上的兩點坐標(biāo)分別為(0b)和(0,d),則這兩個點所成的線段的長為|bd|.如圖1,在直角坐標(biāo)系中的任意兩點P1P2,其坐標(biāo)分別為(a,b)和(c,d),分別過這兩個點作兩坐標(biāo)軸的平行線,構(gòu)成一個直角三角形,其中直角邊P1Q=|ac|,P2Q=|bd|,利用勾股定理可得:線段P1P2的長為

根據(jù)上面材料,回答下面的問題:

1)在平面直角坐標(biāo)系中,已知A6,﹣1),B65),則線段AB的長為 ;

2)若點Cy軸上,點D的坐標(biāo)是(﹣30),且CD=6,則點C的坐標(biāo)是 ;

3)如圖2,在直角坐標(biāo)系中,點AB的坐標(biāo)分別為(1,4)和(3,0),點Cy軸上的一個動點,且A,B,C三點不在同一條直線上,求△ABC周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案