【題目】合肥三十八中為預(yù)防秋季疾病傳播,對(duì)教室進(jìn)行“薰藥消毒”.已知藥物在燃燒釋放過程中,室內(nèi)空氣中每立方米含藥量(毫克)與燃燒時(shí)間(分鐘)之間的關(guān)系如圖所示(即圖中線段和雙曲線在點(diǎn)及其右側(cè)的部分),根據(jù)圖象所示信息,解答下列問題:

(1)寫出從藥物釋放開始,之間的函數(shù)關(guān)系式及自變量的取值范圍;

(2)據(jù)測定,只有當(dāng)空氣中每立方米的含藥量不低于毫克時(shí),對(duì)預(yù)防才有作用,且至少持續(xù)作用分鐘以上,才能完全殺死這種病毒,請問這次消毒是否徹底?

【答案】(1);(2)這次消毒很徹底.

【解析】

首先根據(jù)題意,藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比例;藥物釋放完畢后,yx成反比例,用待定系數(shù)法可得函數(shù)的關(guān)系式;進(jìn)一步求解可得答案.

(1)設(shè)反比例函數(shù)解析式為,將代入解析式得,

,

則函數(shù)解析式為,

代入解析式得,,解得,

設(shè)正比例函數(shù)解析式為,將代入上式得,

,

則正比例函數(shù)解析式為

綜上:

(2)將代入,

代入得到,

,

這次消毒很徹底.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)α度到△A1B1C1的位置,ABA1C1相交于點(diǎn)D,ACA1C1、BC1分別交于點(diǎn)E. F.

(1)求證:△BCF≌△BA1D.

(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將坐標(biāo)是(0,4),(1,0),(2,4)(3,0)(4,4)的點(diǎn)用線段依次連接起來形成一個(gè)圖案.

1)在下列坐標(biāo)系中畫出這個(gè)圖案;

2)若將上述各點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別乘以-1,再將所得的各個(gè)點(diǎn)用線段依次連接起來,所得的圖案與原圖案相比有什么變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.

(1)求證:ABAE;

(2)若BC2=ADAB,求證:四邊形ADCE為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,圖形ABCD是由兩個(gè)二次函數(shù)y1=kx2+mk<0)與y2=ax2+ba>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).

(1)直接寫出這兩個(gè)二次函數(shù)的表達(dá)式;

(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個(gè)頂點(diǎn)在圖形ABCD上),并說明理由;

(3)如圖2,連接BC,CD,AD,在坐標(biāo)平面內(nèi),求使得BDCADE相似(其中點(diǎn)C與點(diǎn)E是對(duì)應(yīng)頂點(diǎn))的點(diǎn)E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAP+APD=180°,∠1=2,求證:∠E=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,OC平分∠AOB,點(diǎn)POC,⊙POA相切,那么⊙POB位置關(guān)系是

2)如圖2,⊙O的半徑為2,∠AOB=120°,

若點(diǎn)P⊙O上的一個(gè)動(dòng)點(diǎn),當(dāng)PA=PB時(shí),是否存在⊙Q,同時(shí)與射線PA.PB相切且與⊙O相切,如果存在,求出⊙Q的半徑; 如果不存在,請說明理由.

若點(diǎn)PBO的延長線上,且滿足PA⊥PB,是否存在⊙Q,同時(shí)與射線PA.PB相切且與⊙O相切,如果存在,請直接寫出⊙Q的半徑; 如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PEBC于點(diǎn)E,PFCD于點(diǎn)F,連接EF給出下列五個(gè)結(jié)論:①AP=EF;②APEF;③△APD一定是等腰三角形;④∠PFE=BAP;⑤PD=EC.其中正確結(jié)論的番號(hào)是( 。

A.①②④⑤B.①②③④⑤C.①②④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)完成某項(xiàng)工程,首先是甲隊(duì)單獨(dú)做了10天,然后乙隊(duì)加入合作,完成剩下的全部工程,設(shè)工程總量為單位1,工程進(jìn)度滿足如圖所示的函數(shù)關(guān)系.

1)求甲、乙兩隊(duì)合作完成剩下的全部工程時(shí),工作量y與天數(shù)x間的函數(shù)關(guān)系式;

2)求實(shí)際完成這項(xiàng)工程所用的時(shí)間比由甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間少多少天?

查看答案和解析>>

同步練習(xí)冊答案