【題目】七年級320名學(xué)生參加安全知識競賽活動,小明隨機(jī)調(diào)查了部分學(xué)生的成績(分?jǐn)?shù)為整數(shù)),繪制了頻率分布表和頻數(shù)分布直方圖(不完整),請結(jié)合圖表信息回答下列問題:
成績(分) | 頻數(shù) |
71≤x<76 | 2 |
76≤x<81 | 8 |
81≤x<86 | 12 |
86≤x<91 | 10 |
91≤x<96 | 6 |
96≤x<101 | 2 |
(1)補(bǔ)全頻數(shù)直方圖;
(2)小明調(diào)查的學(xué)生人數(shù)是_______;頻率分布表的組距是_______;
(3)七年級參加本次競賽活動,分?jǐn)?shù)在范圍內(nèi)的學(xué)生約有多少人.
【答案】(1)見解析;(2)40,5;(3)128人
【解析】
(1)根據(jù)頻數(shù)分布表即可得出91≤x<96的人數(shù)為6人,由此可補(bǔ)全頻數(shù)分布表;
(2)根據(jù)頻數(shù)分布表將所有分?jǐn)?shù)段的人數(shù)加在一起即可得調(diào)查的學(xué)生人數(shù),求出每個小組的兩個端點(diǎn)的距離即可求出組距;
(3)用總?cè)藬?shù)乘以分?jǐn)?shù)在的人數(shù)所占比例即可得出分?jǐn)?shù)在范圍內(nèi)的學(xué)生大致人數(shù).
解:(1)補(bǔ)全頻數(shù)直方圖如下
(2)本次調(diào)查的學(xué)生人數(shù)為:2+8+12+10+6+2=40人,
頻率分布表的組距是:76-71=5,
故答案為:40,5;
(3),
∴分?jǐn)?shù)在范圍內(nèi)的學(xué)生約有128人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,A、B、C三地依次在一直線上,兩輛汽車甲、乙分別從A、B兩地同時出發(fā)駛向C地,如圖②,是兩輛汽車行駛過程中到C地的距離s(km)與行駛時間t(h)的關(guān)系圖象,其中折線段EF﹣FG是甲車的圖象,線段OM是乙車的圖象.
(1)圖②中,a的值為 ;點(diǎn)M的坐標(biāo)為 ;
(2)當(dāng)甲車在乙車與B地的中點(diǎn)位置時,求行駛的時間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將兩塊三角板的直角頂點(diǎn)重合.
(1)寫出以C為頂點(diǎn)的相等的角;
(2)若∠ACB=150°,請直接寫出∠DCE的度數(shù);
(3)寫出∠ACB與∠DCE之間所具有的數(shù)量關(guān)系;
(4)當(dāng)三角板ACD繞點(diǎn)C旋轉(zhuǎn)時,你所寫出的(3)中的關(guān)系是否變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=45°,點(diǎn)D是AC的中點(diǎn),連接BD,作AE⊥BC于E,交BD于點(diǎn)F,點(diǎn)G是BC的中點(diǎn),連接FG,過點(diǎn)B作BH⊥AB交FG的延長線于H.
(1)若AB=3,求AF的長;
(2)求證;BH+2CE=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,6).
(1)如圖①,過點(diǎn)A作AB⊥軸,垂足為B,則三角形AOB的面積為 ;
(2)如圖②,將線段OA向右平移3個單位長度,再向下平移1個單位長度,得到線段.
①求四邊形的面積;
②若P是射線OA上的一動點(diǎn),連接、,請畫出圖形,并直接寫出與,的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理,因?yàn)?/span>的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:(1)若的整數(shù)部分為,小數(shù)部分為,求的值.
(2)已知:,其中是整數(shù),且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB∥CD,點(diǎn)E在AB上,點(diǎn)G在CD上,點(diǎn) F 在直線 AB,CD之間,連接EF,F(xiàn)G,EF垂直于 FG,∠FGD =125°.
(1)求出∠BEF的度數(shù);
(2)如圖 2,延長FE到H,點(diǎn)M在FH的上方,連接MH,Q為直線 AB 上一點(diǎn),且在直線 MH 的右側(cè), 連接 MQ,若∠EHM=∠M +90°,求∠MQA 的度數(shù);
(3)如圖 3,S 為 NB 上一點(diǎn),T 為 GD 上一點(diǎn),作直線 ST,延長 GF 交 AB 于點(diǎn) N,P 為直線 ST 上一動點(diǎn),請直接寫出∠PGN,∠SNP 和∠GPN 的數(shù)量關(guān)系 .(題中所有角都是大于 0°小于 180°的角)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com