【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( 。

A.a>0
B.c<0
C.3是方程ax2+bx+c=0的一個根
D.當x<1時,y隨x的增大而減小

【答案】C
【解析】解:(A)圖象開口向下,所以a<0,
故(A)錯誤;
(B)圖象與y軸交點在y軸的正半軸,所以C>0,
故(B)錯誤;
(C)因為對稱軸為直線x=1,所以(﹣1,0)與(3,0)關于x=1對稱,
故x=3是ax2+bx+c=0的一個根;
故(C)正確;
(D)由圖象可知:當x<1時,y隨x的增大而增大;
故(D)錯誤.
故選(C)
【考點精析】解答此題的關鍵在于理解二次函數(shù)的圖象的相關知識,掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為

(1)若是“相伴數(shù)對”,求的值;

(2)寫出一個“相伴數(shù)對” ,其中

(3)若是“相伴數(shù)對”,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,CE平分∠ACB,CF平分∠ACDEF//BCACM,CM=5,CE2+CF2等于( )

A. 100 B. 75 C. 120 D. 125

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,從節(jié)省資金的角度考慮,應該選擇哪個工程隊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知凸四邊形ABCD中,∠A=∠C=90°.

(1)如圖1,若DE平分∠ADC,BF平分∠ABC的鄰補角,判斷DEBF位置關系并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補角,判斷DEBF位置關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學生社團為了解本校學生喜歡球類運動的情況,隨機抽取了若干名學生進行問卷調(diào)查,要求每位學生只能填寫一種自己喜歡的球類運動,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
(1)參加調(diào)查的人數(shù)共有人;在扇形圖中,m=;將條形圖補充完整;
(2)如果該校有3500名學生,則估計喜歡“籃球”的學生共有多少人?
(3)該社團計劃從籃球、足球和乒乓球中,隨機抽取兩種球類組織比賽,請用樹狀圖或列表法,求抽取到的兩種球類恰好是“籃球”和“足球”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長4m的樓梯AB的傾斜角∠ABD為60°,為了改善樓梯的安全性能,準備重新建造樓梯,使其傾斜角∠ACD為45°,則調(diào)整后的樓梯AC的長為( 。

A.2 m
B.2 m
C.(2 ﹣2)m
D.(2 ﹣2)m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖數(shù)軸上A、B、C三點對應的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動點,點PA出發(fā),沿數(shù)軸正方向以每秒1.5個單位長度的速度勻速運動,點Q從點C出發(fā)在射線CA上向點A勻速運動,且P、Q兩點同時出發(fā).

(1)a、b的值

(2)P運動到線段OB的中點時,點Q運動的位置恰好是線段AB靠近點B的三等分點,求點Q的運動速度

(3)P、Q兩點間的距離是6個單位長度時,求OP的長.

查看答案和解析>>

同步練習冊答案