【題目】如圖,ABC中,C=90°,BC=7cm,AC=5,點P從B點出發(fā),沿BC方向以2m/s的速度移動,點Q從C出發(fā),沿CA方向以1m/s的速度移動.

(1)若P、Q同時分別從B、C出發(fā),那么幾秒后,PCQ的面積等于4?

(2)若P、Q同時分別從B、C出發(fā),那么幾秒后,PQ的長度等于5?

(3)PCQ的面積何時最大,最大面積是多少?

【答案】(1);(2);(3)當t=PCQ的面積最大,最大面積為

【解析】

試題分析:(1)分別表示出線段CP和線段CQ的長,利用三角形的面積公式列出方程求解即可;

(2)表示出線段CP和CQ后利用勾股定理列出方程求解即可;

(3)列出PCQ的面積關(guān)于t的函數(shù)解析式,配方可得最大值.

試題解析:(1)設(shè)t秒后PCQ的面積等于4,根據(jù)題意得:CQ=t,BP=2t,則CP=7-2t,

CQ×CP=×t(7-2t)=4,

整理,得:t1=,t2=,

故若P、Q同時分別從B、C出發(fā),那么、秒后,PCQ的面積等于4;

(2)若PQ的長度等于5,則PC2+QC2=PQ2,

即:(7-2t)2+t2=25,

整理,得:5t2-28t+24=0,

解得:t1=,t2=,

CP=7-2t≥0,即t≤3.5,

t=>3.5,舍去,

故那么秒后,PQ的長度等于5;

(3)由(1)知PCQ的面積S=×t(7-2t)=-(t-2+,

當t=時,S取得最大值,最大值為,

故當t=PCQ的面積最大,最大面積為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①相反數(shù)等于它本身的數(shù)只有0;②倒數(shù)等于它本身的數(shù)有±1;③絕對值等于它本身的數(shù)是正數(shù);④平方等于它本身的數(shù)只有1;其中錯誤的有:( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果+20%表示增加20%,那么-6%表示_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知x =,y = ,求n為正整數(shù))的值;

(2)觀察下列各式:32-12=8×1,52-32=8×2,72-52=8×3,…,探索以上式子的規(guī)律,試寫出第n個等式,并運用所學的數(shù)學知識說明你所寫式子的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】幼兒園的小朋友打算選擇一種形狀、大小都相同的多邊形塑料膠板鋪地面.為了保證鋪地時既無縫隙,又不重疊,請你告訴他們可以選擇哪些形狀的塑料膠板(填三種)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為30°,腰長為6,則其底邊上的高是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】證明定理:三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等,已知:

如圖,在ABC中,分別作AB邊、BC邊的垂直平分線,兩線相交于點P,分別交AB邊、BC邊于點E、F.

求證:AB、BC、AC的垂直平分線相交于點P

證明:點P是AB邊垂直平線上的一點,

= ).

同理可得,PB=

= (等量代換).

(到一條線段兩個端點距離相等的點,在這條線段的

AB、BC、AC的垂直平分線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是(  ).

A. 對稱軸是連接對稱點線段的垂直平分線

B. 線段垂直平分線上的點與這條線段兩個端點的距離相等

C. 任何一個角都是軸對稱圖形

D. 兩個三角形全等,這兩個三角形一定成軸對稱

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在8×8網(wǎng)格紙中,每個小正方形的邊長都為1.

(1)請在網(wǎng)格紙中建立平面直角坐標系,使點A、C的坐標分別為(-4,4),(-1,3),并寫出點B的坐標為 ;

(2)畫出ABC關(guān)于y軸的對稱圖形A1B1C1,并寫出B1點的坐標;

(3)在y軸上求作一點P,使PAB的周長最小,并直接寫出點P的坐標

查看答案和解析>>

同步練習冊答案