【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是AB的中點(diǎn),以E為圓心,ED為半徑作半圓,交A、B所在的直線于M、N兩點(diǎn),分別以直徑MD、ND為直徑作半圓,則陰影部分面積為( 。

A.9
B.18
C.36
D.72

【答案】B
【解析】解:根據(jù)圖形可知陰影部分的面積=兩個(gè)小的半圓的面積+△DMN的面積﹣大半圓的面積.
∵M(jìn)N的半圓的直徑,
∴∠MDN=90°.
在Rt△MDN中,MN2=MD2+DN2 ,
∴兩個(gè)小半圓的面積=大半圓的面積.
∴陰影部分的面積=△DMN的面積.
在Rt△AED中,ED=
∴陰影部分的面積=△DMN的面積=
故選:B.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和扇形面積計(jì)算公式的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組請(qǐng)結(jié)合題意,完成本題解答.
(1)解不等式①,得
(2)解不等式②,得
(3)把不等式①和②的解集在數(shù)軸上表示出來(lái):
;
(4)原不等式組的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD、為正方形,連接AG、CE.

(1)
求證:AG=CE;
(2)求證:AG⊥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,延長(zhǎng)BC至M,使BM=DN,連接MN交BD延長(zhǎng)線于點(diǎn)E.

(1)求證:BD+2DE=BM.
(2)如圖2,連接BN交AD于點(diǎn)F,連接MF交BD于點(diǎn)G.若AF:FD=1:2,且CM=2,則線段DG=_____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,AD=3,點(diǎn)P是AB邊上一點(diǎn)(不與A,B重合),連接CP,過(guò)點(diǎn)P作PQ⊥CP交AD邊于點(diǎn)Q,連接CQ.

(1)當(dāng)△CDQ≌△CPQ時(shí),求AQ的長(zhǎng);
(2)取CQ的中點(diǎn)M,連接MD,MP,若MD⊥MP,求AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)P在AD上,且不與A、D重合,BP的垂直平分線分別交CD、AB于E、F兩點(diǎn),垂足為Q,過(guò)E作EH⊥AB于H.

(1)求證:HF=AP;
(2)若正方形ABCD的邊長(zhǎng)為12,AP=4,求線段EQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,AD為弦,∠DBC=∠A.

(1)求證:BC是⊙O的切線;
(2)連接OC,如果OC恰好經(jīng)過(guò)弦BD的中點(diǎn)E,且tanC=,AD=3,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某校初三學(xué)生體能水平,體育老師從剛結(jié)束的“女生800米,男生1000米”體能測(cè)試成績(jī)中隨機(jī)抽取了一部分同學(xué)的成績(jī),按照“優(yōu)秀、良好、合格、不合格”進(jìn)行了統(tǒng)計(jì),并繪制了下列不完整的統(tǒng)計(jì)圖,

請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)體育老師總共選取了多少人的成績(jī)?扇形統(tǒng)計(jì)圖中“優(yōu)秀”部分的圓心角度數(shù)是多少?
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知某校初三在校生有2500人,從統(tǒng)計(jì)情況分析,請(qǐng)你估算此次體能測(cè)試中達(dá)到“優(yōu)秀”水平的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx(k為常數(shù),k≠0)與雙曲線y= (m為常數(shù),m>0)的交點(diǎn)為A、B,AC⊥x軸于點(diǎn)C,∠AOC=30°,OA=2
(1)求m、k的值;
(2)點(diǎn)P在y軸上,如果SABP=3k,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案