已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該建材店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7. 5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤,售價應定為每噸多少元?
(4)小靜說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.

(1)當每噸售價是240元時,計算此時的月銷售量60噸;
(2)y=﹣x2+315x﹣24000;
(3)要獲得最大月利潤,售價應定為每噸210元;
(4)小靜說的不對.理由見解析.

解析試題分析:本題屬于市場營銷問題,月利潤=(每噸售價﹣每噸其它費用)×銷售量,銷售量與每噸售價的關(guān)系要表達清楚.再用二次函數(shù)的性質(zhì)解決最大利潤問題.
試題解析:(1)由題意得:
45+×7.5=60(噸);
(2)由題意:
y=(x﹣100)(45+×7.5),
化簡得:y=﹣x2+315x﹣24000;
(3)y=﹣x2+315x﹣24000=﹣(x﹣210)2+9075.
要獲得最大月利潤,材料的售價應定為每噸210元;
(4)我認為,小靜說的不對.
理由:當月利潤最大時,x為210元,
而對于月銷售額W=x(45+×7.5)=﹣(x﹣160)2+19200來說,
當x為160元時,月銷售額W最大.
∴當x為210元時,月銷售額W不是最大.
∴小靜說的不對.
考點:二次函數(shù)的應用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點A(-1,0),對稱軸為過點(1,0)且與y軸平行的直線.

(1)求點B的坐標
(2)求該二次函數(shù)的關(guān)系式;
(3)結(jié)合圖象,解答下列問題:
①當x取什么值時,該函數(shù)的圖象在x軸上方?
②當-1<x<2時,求函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,﹣),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A、B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線與x軸相交于兩點A(1,0),B(-3,0),與y軸相交于點C(0,3).
(1)求此拋物線的函數(shù)表達式;
(2)如果點是拋物線上的一點,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象的頂點為M(2,1),且過點N(3,2).

(1)求這個二次函數(shù)的關(guān)系式;
(2)若一次函數(shù)y=-x-4的圖象與x軸交于點A,與y軸交于點B,P為拋物線上的一個動點,過點P作PQ∥y軸交直線AB于點Q,以PQ為直徑作圓交直線AB于點D.設點P的橫坐標為n,問:當n為何值時,線段DQ的長取得最小值?最小值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線(b,c是常數(shù),且c<0)與軸分別交于點A、B(點A位于點B的左側(cè)),與軸的負半軸交于點C,點A的坐標為(-1,0).

(1)請直接寫出點OA的長度;
(2)若常數(shù)b,c滿足關(guān)系式:.求拋物線的解析式.
(3)在(2)的條件下,點P是軸下方拋物線上的動點,連接PB、PC.設△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有多少個(直接寫出結(jié)果)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某公司經(jīng)銷一種綠茶,每千克成本為50元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量(千克)隨銷售單價(元/千克)的變化而變化,具體關(guān)系式為:,且物價部門規(guī)定這種綠茶的銷售單價不得高于90元/千克.設這種綠茶在這段時間內(nèi)的銷售利潤為(元),解答下列問題:
(1)求的關(guān)系式;
(2)當取何值時,的值最大?
(3)如果公司想要在這段時間內(nèi)獲得2 250元的銷售利潤,銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

高盛超市準備進一批季節(jié)性小家電,每個進價為40元,經(jīng)市場預測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.
(1)設每個小家電定價增加元,每售出一個小家電可獲得的利潤是多少元?(用含的代數(shù)式表示)
(2)當定價增加多少元時,商店獲得利潤6000元 ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=x2+2x-1.
(1)寫出它的頂點坐標;
(2)當x取何值時,y隨x的增大而增大;
(3)求出圖象與軸的交點坐標.

查看答案和解析>>

同步練習冊答案