【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是(  )

A.
B.
C.
D.

【答案】C
【解析】解:由二次函數(shù)y=ax2+bx+c的圖象可知,a>0,b<0,c<0,
則一次函數(shù)y=ax+b的圖象經(jīng)過第一、三、四象限,
反比例函數(shù)y= 的圖象在二四象限,
故選C.
【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的圖象和性質(zhì)的相關(guān)知識,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn),以及對反比例函數(shù)的圖象的理解,了解反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文昌某校準(zhǔn)備組織學(xué)生及學(xué)生家長到三亞進(jìn)行社會實踐,為了便于管理,所有人員必須乘坐在同一列火車上;根據(jù)報名人數(shù),若都買一等座單程火車票需17010元,若都買二等座單程火車票且花錢最少,則需11220元;已知學(xué)生家長與教師的人數(shù)之比為2:1,文昌到三亞的火車票價格(部分)如下表所示:

運行區(qū)間

公布票價

學(xué)生票

上車站

下車站

一等座

二等座

二等座

文昌

三亞

81(元)

68(元)

51(元)


(1)參加社會實踐的老師、家長與學(xué)生各有多少人?
(2)由于各種原因,二等座火車票單程只能買x張(x小于參加社會實踐的人數(shù)),其余的須買一等座火車票,在保證每位參與人員都有座位坐的前提下,請你設(shè)計最經(jīng)濟(jì)的購票方案,并寫出購買火車票的總費用(單程)y與x之間的函數(shù)關(guān)系式.
(3)請你做一個預(yù)算,按第(2)小題中的購票方案,購買一個單程火車票至少要花多少錢?最多要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時,函數(shù)圖象過點(﹣1,1)
B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點稱為“整點”.

(1)直接寫出函數(shù)y= 圖象上的所有“整點”A1 , A2 , A3 , …的坐標(biāo);
(2)在(1)的所有整點中任取兩點,用樹狀圖或列表法求出這兩點關(guān)于原點對稱的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點,這兩條線的交點為P.
(1)求點P的坐標(biāo).
(2)求△APB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點A(8,0),與y軸分別交于點B(0,4)和點C(0,16),則圓心M到坐標(biāo)原點O的距離是( 。

A.10
B.8
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .(a為常數(shù),a>0) (Ⅰ)若 是函數(shù)f(x)的一個極值點,求a的值;
(Ⅱ)求證:當(dāng)0<a≤2時,f(x)在 上是增函數(shù);
(Ⅲ)若對任意的a∈(1,2),總存在 ,使不等式f(x0)>m(1﹣a2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案