【題目】如圖,直角三角形ABC有一外接圓,其中∠B=90°,AB>BC,今欲在 上找一點P,使得 = ,以下是甲、乙兩人的作法: 甲:⑴取AB中點D
⑵過D作直線AC的平行線,交 于P,則P即為所求
乙:⑴取AC中點E
⑵過E作直線AB的平行線,交 于P,則P即為所求
對于甲、乙兩人的作法,下列判斷何者正確?( )
A.兩人皆正確
B.兩人皆錯誤
C.甲正確,乙錯誤C
D.甲錯誤,乙正確
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=2∠C,∠BAC的平分線AD交BC于D,過B作BE⊥AD交AD于F,交AC于E.
(1)求證:△ABE為等腰三角形;
(2)已知AC=11,AB=6,求BD長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華在某月的日歷中圈出幾個數(shù),算得這三個數(shù)的和為36,那么這幾個數(shù)的形式可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.
(1)當(dāng)∠AOB=20°時,求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=20°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結(jié)果精確到0.01cm) (參考數(shù)據(jù):sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)小寧和婷婷在一起做拼圖游戲,他們用 “、△△、=”構(gòu)思出了獨特而有意義的圖形并根據(jù)圖形還用簡潔的語言進行了表述:
觀察以上圖案
(1)這個圖案有什么特點?
(2)它可以通過一個“基本圖案”經(jīng)過怎樣的平移而形成?
(3)在平移的過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?你能解釋其中的道理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是以BC為底的等腰三角形,AD是邊BC上的高,點E、F分別是AB、AC的中點.
(1)求證:四邊形AEDF是菱形;
(2)如果四邊形AEDF的周長為12,兩條對角線的和等于7,求四邊形AEDF的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支清雪隊同時開始清理某路段積雪,一段時間后,乙隊被調(diào)往別處,甲隊又用了3小時完成了剩余的清雪任務(wù),已知甲隊每小時的清雪量保持不變,乙隊每小時清雪50噸,甲、乙兩隊在此路段的清雪總量y(噸)與清雪時間x(時)之間的函數(shù)圖象如圖所示.
(1)乙隊調(diào)離時,甲、乙兩隊已完成的清雪總量為噸;
(2)求此次任務(wù)的清雪總量m;
(3)求乙隊調(diào)離后y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某長方形廣場的四個角都有一個半徑相同的四分之一圓形的草地,若圓形的半徑為x米,長方形長為a米,寬為b米
(1)分別用代數(shù)式表示草地和空地的面積;
(2)若長方形長為300米,寬為200米,圓形的半徑為10米,求廣場空地的面積(計算結(jié)果保留到整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com