【題目】如圖,矩形ABCD中,AB=10,AD=4,點E從D向C以每秒1個單位的速度運動,以AE為一邊在AE的左上方作正方形AEFG,同時垂直于CD的直線MN也從C向D以每秒2個單位的速度運動,當點F落在直線MN上,設運動的時間為t,則t的值為( )
A.1B.C.4D.
【答案】D
【解析】
過點F作FH⊥CD,交直線CD于點Q,則∠EHF=90°,易證∠ADE=∠EHF,由正方形的性質得出∠AEF=90°,AE=EF,證得∠AED=∠EFH,由AAS證得△ADE≌△EHF得出AD=EH=4,則t+2t=4+10,即可得出結果.
過點F作FH⊥CD,交直線CD于點Q,則∠EHF=90°,如圖所示:
∵四邊形ABCD為矩形,
∴∠ADE=90°,
∴∠ADE=∠EHF,
∵在正方形AEFG中,∠AEF=90°,AE=EF,
∴∠AED+∠HEF=90°,
∵∠HEF+∠EFH=90°,
∴∠AED=∠EFH,
在△ADE和△EHF中,
,
∴△ADE≌△EHF(AAS),
∴AD=EH=4,
由題意得:t+2t=4+10,
解得:t=,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初三(1)班50名學生需要參加體育“五選一”自選項目測試,班上學生所報自選項目的情況統(tǒng)計表如下:
(1)求a,b的值;
(2)若將各自選項目的人數(shù)所占比例繪制成扇形統(tǒng)計圖,求“一分鐘跳繩”對應扇形的圓心角的度數(shù);
(3)在選報“推鉛球”的學生中,有3名男生,2名女生.為了了解學生的訓練效果,從這5名學生中隨機抽取兩名學生進行推鉛球測試,求所抽取的兩名學生中至多有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校擬派一名跳高運動員參加校際比賽,對甲、乙兩名同學進行了8次跳高選拔比賽,他們的原始成績(單位:cm)如下表:
學生/成績/次數(shù) | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 |
甲 | 169 | 165 | 168 | 169 | 172 | 173 | 169 | 167 |
乙 | 161 | 174 | 172 | 162 | 163 | 172 | 172 | 176 |
兩名同學的8次跳高成績數(shù)據(jù)分析如下表:
學生/成績/名稱 | 平均數(shù)(單位:cm) | 中位數(shù)(單位:cm) | 眾數(shù)(單位:cm) | 方差(單位:cm2) |
甲 | a | b | c | 5.75 |
乙 | 169 | 172 | 172 | 31.25 |
根據(jù)圖表信息回答下列問題:
(1)a= ,b= ,c= ;
(2)這兩名同學中, 的成績更為穩(wěn)定;(填甲或乙)
(3)若預測跳高165就可能獲得冠軍,該校為了獲取跳高比賽冠軍,你認為應該選擇 同學參賽,理由是: ;
(4)若預測跳高170方可奪得冠軍,該校為了獲取跳高比賽冠軍,你認為應該選擇 同學參賽,班由是: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外無其它差別,其中紅球有個,若從中隨機摸出一個,這個球是白球的概率為.
(1)求袋子中白球的個數(shù);
(2)隨機摸出一個球后,不放回,再隨機摸出一個球,請結合樹狀圖或列表求兩次都摸到相同顏色的小球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東67°方向,距離B地520km,C地位于A地南偏東30°方向,若打通穿山隧道,建成兩地直達高鐵,求建成高鐵后從B地前往C地的路程.(,結果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線:的項點為,交軸于、兩點(點在點左側),且.
(1)求拋物線的函數(shù)解析式;
(2)過點的直線交拋物線于點,交軸于點,若的面積被軸分為1: 4兩個部分,求直線的解析式;
(3)在(2)的情況下,將拋物線繞點逆時針旋轉180°得到拋物線,點為拋物線上一點,當點的橫坐標為何值時,為直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關系,并說明理由;
(3)如圖3,當點D在邊BC的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的箱子里有四張外形相同的卡片卡片上分別標有數(shù)字﹣1,1,3,5.摸出一張后,記下數(shù)字,再放回,搖勻后再摸出一張,記下數(shù)字.以第一次得到的放字為橫坐標,第二次得到的數(shù)字為縱坐標,得到一個點則這個點.恰好在直線y=﹣x+4上的概率是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com