【題目】一次函數(shù) 與二次函數(shù) 在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
【答案】B
【解析】A.由一次函數(shù)的圖象可知,a>0,b>0,由二次函數(shù)圖象可知,a<0,b<0,故錯誤.
B.由一次函數(shù)的圖象可知,a<0,b<0,由二次函數(shù)圖象可知,a<0,b<0,正確;
C.由一次函數(shù)的圖象可知,a>0,b>0,由二次函數(shù)圖象可知,a>0,b<0,故錯誤.
D.由一次函數(shù)的圖象可知,a<0,b>0,由二次函數(shù)的圖象可知,a<0,b<0,故錯誤.
所以答案是:B.
【考點精析】關(guān)于本題考查的一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì),需要了解一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減。灰淮魏瘮(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點A按順時針方向旋轉(zhuǎn)90°,得到△ADE,點B的對應(yīng)點為點D,點C的對應(yīng)點E落在BC邊上,連接BD.
(1)求證:DE⊥BC;
(2)若AC=3,BC=7,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于點E,且CD=AC,DF∥BC,分別與AB,AC交于點G,F.
(1)求證:GE=GF;
(2)填空:若BD=1,則DF的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市實施居民用水階梯價格制度,按年度用水量計算,將居民家庭全年用水量劃分為三個階梯,水價按階梯遞增:
第一階梯:年用水量不超過200噸,每噸水價為3元;
第二階梯:年用水量超過200噸但不超過300噸的部分,每噸水價為3. 5元;
第三階梯:年用水量超過300噸的部分,每噸水價為6元.
(1)小明家2018年用水180噸,這一年應(yīng)繳納水費 元;
(2)小亮家2018年繳納水費810元,則小亮家這一年用水多少噸?
(3)小紅家2017年和2018年共用水600噸,共繳納水費1950元,并且2018年的用水量超過2017年的用水量,則小紅家2017年和2018年各用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,使得點C,A,B1在同一條直線上,那么旋轉(zhuǎn)角等于( )
A.55°
B.70°
C.125°
D.145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶實驗外國語學(xué)校運動會期間,小明和小歡兩人打算勻速從教室跑到600米外的操場參加入場式,出發(fā)時小明發(fā)現(xiàn)鞋帶松了,停下來系鞋帶,小歡繼續(xù)跑往操場,小明系好鞋帶后立即沿同一路線開始追趕小歡.小明在途中追上小歡后繼續(xù)前行,小明到達(dá)操場時入場式還沒有開始,于是小明站在操場等待,小歡繼續(xù)前往操場.設(shè)小明和小歡兩人相距(米),小歡行走的時間為(分鐘),關(guān)于的函數(shù)圖像如圖所示,則在整個運動過程中,小明和小歡第一次相距米后,再過_____分鐘兩人再次相距米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個長方形的長和寬分別為x厘米和y厘米(x,y為正整數(shù)),如果將長方形的長和寬各增加5厘米得到新的長方形,面積記為,將長方形的長和寬各減少2厘米得到新的長方形,面積記為.
(1)請說明:與的差一定是7的倍數(shù).
(2)如果比大196,求原長方形的周長.
(3)如果一個面積為的長方形和原長方形能夠沒有縫隙沒有重疊的拼成一個新的長方形,請找出x與y的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點的坐標(biāo)是,點的坐標(biāo)是,點和點關(guān)于原點對稱,點是直線位于軸右側(cè)部分圖象上一點,連接,已知.
(1)求直線的解析式;
(2)如圖2,沿著直線平移得,平移后的點與點重合.點為直線上的一動點,當(dāng)的值最小時,請求出的最小值及此時點的坐標(biāo);
(3)如圖3,將沿直線是翻折得點為平面內(nèi)任意一動點,在直線上是否存在一點,使得以點為頂點的四邊形是矩形;若存在,請直接寫出點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠C=30°,⊙O的半徑為5,若點P是⊙O上的一點,在△ABP中,PB=AB,則PA的長為( )
A.5
B.
C.5
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com