【題目】如圖,AB是⊙O的直徑,點C、E在⊙O上,∠B=2∠ACE,在BA的延長線上有一點P,使得∠P=∠BAC,弦CE交AB于點F,連接AE.
(1)求證:PE是⊙O的切線;
(2)若AF=2,AE=EF=,求OA的長.
【答案】(1)見解析;(2)OA=5
【解析】
(1)連接OE,根據(jù)圓周角定理得到∠AOE=∠B,根據(jù)圓周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到結(jié)論;
(2)根據(jù)等腰三角形的性質(zhì)得到∠OAE=∠OEA,∠EAF=∠AFE,再根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:(1)連接OE,
∴∠AOE=2∠ACE,
∵∠B=2∠ACE,
∴∠AOE=∠B,
∵∠P=∠BAC,
∴∠ACB=∠OEP,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠OEP=90°,
∴PE是⊙O的切線;
(2)∵OA=OE,
∴∠OAE=∠OEA,
∵AE=EF,
∴∠EAF=∠AFE,
∴∠OAE=∠OEA=∠EAF=∠AFE,
∴△AEF∽△AOE,
∴,
∵AF=2,AE=EF=,
∴OA=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方3米處的點C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點D,在點D處放置測角儀,測得旗桿頂部A的仰角為37°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.
(1)求點D的鉛垂高度(結(jié)果保留根號);
(2)求旗桿AB的高度(精確到0.1).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點A在x軸正半軸,點C在y軸正半軸,點D是邊BC的中點,反比例函數(shù)(k>0,x>0)的圖象經(jīng)過B,D.若點C的縱坐標(biāo)為6,點D的橫坐標(biāo)為3.5,則k的值是( )
A. 6B. 8C. 12D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為⊙O的直徑,AC為⊙O的弦,AB=AC,AD交BC于點E,AE=2,ED=4,延長DB到點F,使得BF=BO,連接FA.則下列結(jié)論中不正確的是( 。
A. △ABE∽△ADBB. ∠ABC=∠ADB
C. AB=3D. 直線FA與⊙O相切
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們購物的支付方式更加多樣、便捷,為調(diào)查大學(xué)生購物支付方式,某大學(xué)一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該大學(xué)有10000名學(xué)生,請你估計購物選擇用支付寶支付方式的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,點P(a,b)經(jīng)過某種變換后得到的對應(yīng)點為. 已知A,B,C是不共線的三個點,它們經(jīng)過這種變換后,得到的對應(yīng)點分別為. 若△ABC的面積為,△的面積為,則用等式表示與的關(guān)系為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與y軸交于點C(0,-4),與x軸交于點A,B,且B點的坐標(biāo)為(2,0)
(1)求該拋物線的解析式;
(2)若點P是AB上的一動點,過點P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點D為OA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,點B在⊙O上,∠ACB=30°.
(1) 利用尺規(guī)作∠ABC的平分線BD,交AC于點E,交⊙O于點D,連接CD(保留作圖痕跡,不寫作法)
(2) 在 (1) 所作的圖形中,求△ABE與△CDE的面積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com