新定義:若x0=ax02+bx0+c成立,則稱點(x0,x0)為拋物線y=ax2+bx+c (a≠0)上的不動點.設拋物線C的解析式為:y=ax2+(b+1)x+(b -1)(a≠0).
(1)拋物線C過點(0,-3);如果把拋物線C向左平移個單位后其頂點恰好在y軸上,求拋物線C的解析式及其上的不動點;
(2)對于任意實數(shù)b,實數(shù)a應在什么范圍內(nèi),才能使拋物線C上總有兩個不同的不動點?
(3)設a為整數(shù),且滿足a+b+1=0,若拋物線C與x軸兩交點的橫坐標分別為x1, x2,是否存在整數(shù)k,使得成立?若存在,求出k的值;若不存在,請說明理由.
(1)y=x2-x-3,(-1,-1)和(3,3);(2)0<a<1;(3)-1或-2.
解析試題分析:(1)根據(jù)拋物線C過點(0,-3),把拋物線C向左平移個單位后其頂點恰好在y軸上,即可得到關于a、b的方程組,從而求得結果;
(2)由拋物線C有兩個不同點可得△>0,即b2-4a(b-1)>0,b2-4ab+4a>0,再結合b為任意實數(shù),且使得上式成立,可得(-4a)2-4×1×4a<0,整理得a2-a<0,即可求得結果;
(3)由a+b+1=0得b=-a-1,代入拋物線C得y=ax2-ax-(a+2),根據(jù)x1與x2是拋物線C與x軸的交點橫坐標可得△=a2+4a(a+2)>0,即可求得字母a的范圍,再結合根與系數(shù)的關系求解即可.
(1)由題意得,解之得
∴拋物線為y=x2-x-3
令x=x2-x-3,解之得x1=-1,x2=3
∴不動點為(-1,-1)和(3,3);
(2)∵拋物線C有兩個不同的不動點,
∴x=ax2+(b+1)x+(b-1),整理得ax2+bx+(b-1)=0
∵拋物線C有兩個不同點,
∴△>0,即b2-4a(b-1)>0,b2-4ab+4a>0
∵b為任意實數(shù),且使得上式成立,
∴(-4a)2-4×1×4a<0,整理得a2-a<0,
從而得或,解之得0<a<1
∴實數(shù)a應在0<a<1;
(3)由a+b+1=0得b=-a-1,代入拋物線C得y=ax2-ax-(a+2)
∵x1與x2是拋物線C與x軸的交點橫坐標
∴△=a2+4a(a+2)>0,解得a>0或a<
由根與系數(shù)的關系,得,x1+x2="1," x1·x2= ,
∴k=3+=3+=( a>0或a<,且a為整數(shù))
要使k為整數(shù),取a= -4、-3、-1、0,其中a= -1、0不合題意,舍去;
∴存在, .
考點:二次函數(shù)的綜合性
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:閱讀理解
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年江西省景德鎮(zhèn)市九年級第三次質檢數(shù)學試卷(解析版) 題型:解答題
新定義:若x0=ax02+bx0+c成立,則稱點(x0,x0)為拋物線y=ax2+bx+c (a≠0)上的不動點.設拋物線C的解析式為:y=ax2+(b+1)x+(b -1)(a≠0).
(1)拋物線C過點(0,-3);如果把拋物線C向左平移個單位后其頂點恰好在y軸上,求拋物線C的解析式及其上的不動點;
(2)對于任意實數(shù)b,實數(shù)a應在什么范圍內(nèi),才能使拋物線C上總有兩個不同的不動點?
(3)設a為整數(shù),且滿足a+b+1=0,若拋物線C與x軸兩交點的橫坐標分別為x1, x2,是否存在整數(shù)k,使得成立?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com