【題目】如圖1,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),連接、,已知點(diǎn)A、C的坐標(biāo)為、.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是線段下方拋物線上的一動(dòng)點(diǎn),如果在x軸上存在點(diǎn)Q,使得以點(diǎn)B、C、P、Q為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)Q的坐標(biāo);
(3)如圖2,若點(diǎn)M是內(nèi)一動(dòng)點(diǎn),且滿足,過點(diǎn)M作,垂足為N,設(shè)的內(nèi)心為I,試求的最小值.
【答案】(1);(2)Q的坐標(biāo)為或;(3)的最小值為
【解析】
(1)待定系數(shù)法求解析式;
(2)根據(jù)即點(diǎn)C坐標(biāo),可以求出P點(diǎn)坐標(biāo),算出CP長,即可寫出Q點(diǎn)坐標(biāo);
(3)利用可判斷出I的運(yùn)動(dòng)軌跡是圓弧,設(shè)I運(yùn)動(dòng)軌跡所在的圓心為G
計(jì)算出圓心G的坐標(biāo)及半徑為,當(dāng)G、I、C三點(diǎn)共線時(shí)候最短.
(1)由題意得:A點(diǎn)坐標(biāo)為,C點(diǎn)坐標(biāo)為帶入中
得:,
解得:
∴拋物線的解析式為.
(2)∵點(diǎn)Q在x軸上,又點(diǎn)B、C、P、Q為頂點(diǎn)的四邊形是平行四邊形
∴,由對稱性可知,P點(diǎn)的坐標(biāo)為
∴,∴.
∴Q的坐標(biāo)為或.
(3)連接,,
∵I為的內(nèi)心
∴、分別平分,
∴
又∵,∴
∴.
又∵,
∴
∴
∴I的運(yùn)動(dòng)軌跡是圓。
設(shè)I運(yùn)動(dòng)軌跡所在的圓心為G
∵,∴
又∵,
∴圓心G的坐標(biāo)為,半徑為
當(dāng)G、I、C三點(diǎn)共線時(shí)候最短
∵,
∴的最小值為
綜上所述:的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點(diǎn)A在x軸上,頂點(diǎn)C在y軸上,OA=8,OC=4.點(diǎn)P為對角線AC 上一動(dòng)點(diǎn),過點(diǎn)P作PQ⊥PB,PQ交x軸于點(diǎn)Q.
(1)tan∠ACB=________;
(2)在點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A的過程中,的值是否發(fā)生變化?如果變化,請求出其變化范圍;如果不變,請求出其值;
(3)若將△QAB沿直線BQ折疊后,點(diǎn)A與點(diǎn)P重合,則PC的長為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中點(diǎn)、是某函數(shù)圖象上任意兩點(diǎn).將函數(shù)圖象中的部分沿直線作軸對稱,的部分沿直線作軸對稱,與原函數(shù)圖象中的部分組成了個(gè)新函數(shù)的圖象,稱這個(gè)新函數(shù)為原函數(shù)關(guān)于點(diǎn)、的“雙對稱函數(shù)”.
例如:如圖①,點(diǎn)、是一次函數(shù)圖象上的兩個(gè)點(diǎn),則函數(shù)關(guān)于點(diǎn)、的“雙對稱函數(shù)”的圖象如圖②所示.
圖① 圖②
(1)點(diǎn)、是函數(shù)圖象上的兩點(diǎn),關(guān)于點(diǎn)、的“雙對稱函數(shù)”的圖象記作.若是中心對稱圖形,直接寫出的值.
(2)點(diǎn)、是二次函數(shù)圖象上的兩點(diǎn),該二次函數(shù)關(guān)于點(diǎn)、的“雙對稱函數(shù)”記作.
①求、兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示).
②當(dāng)時(shí),求出函數(shù)的解析式;
③若時(shí),函數(shù)的最小值為,求時(shí),的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為的網(wǎng)格中,,B,C均在格點(diǎn)上.
(Ⅰ)△ABC的面積為_______;
(Ⅱ)若有一個(gè)邊長為6的正方形,且滿足點(diǎn)A為該正方形的一個(gè)頂點(diǎn),且點(diǎn)B,點(diǎn)C分別在該正方形的兩條邊上,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出這個(gè)正方形,并簡要說明其它頂點(diǎn)的位置是如何找到的(不要求證明)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A、B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,兩種車型的銷售總額為96萬元;本周銷售2輛A型車和1輛B型車,兩種車型的銷售總額為62萬元,已知兩種型號汽車銷售價(jià)格始終不變.
(1)求A、B兩種車型的銷售單價(jià)分別是多少?
(2)第三周計(jì)劃售出A、B兩種型號的車共5輛,若銷售總額不少于100萬元,則B型車至少要售出多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在四邊形ABCD中,∠A=∠C=90°,AB=CD,求證:四邊形ABCD是矩形;
(2)如圖②,若四邊形ABCD滿足∠A=∠C>90°,AB=CD,求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年的春節(jié),對于我們來說,有些不一樣,我們不能和小伙伴相約一起玩耍,不能去游樂場放飛自我,也不能和自己的兄弟姐妹一起吃美味的大餐,這么做,是因?yàn)槲覀兠恳粋(gè)人都在面臨一個(gè)眼睛看不到的敵人,它叫病毒,殘酷的病毒會(huì)讓人患上肺炎,人與人的接觸會(huì)讓這種疾病快速地傳播開來,嚴(yán)重的還會(huì)有生命危險(xiǎn),目前我省已經(jīng)啟動(dòng)突發(fā)公共衛(wèi)生事件一級應(yīng)急響應(yīng),但我們相信,只要大家一起努力,疫情終有會(huì)被戰(zhàn)勝的一天.
在這個(gè)不能出門的悠長假期里,某小學(xué)隨機(jī)對本校部分學(xué)生進(jìn)行“假期中,我在家可以這么做!A.扎實(shí)學(xué)習(xí)、B.快樂游戲、C.經(jīng)典閱讀、D.分擔(dān)勞動(dòng)、E.樂享健康”的網(wǎng)絡(luò)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(若每一位同學(xué)只能選擇一項(xiàng)),請根據(jù)圖中的信息,回答下列問題.
(1)這次調(diào)查的總?cè)藬?shù)是 人;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖,并說明扇形統(tǒng)計(jì)圖中E所對應(yīng)的圓心角是 度;
(3)若學(xué)校共有學(xué)生的1700人,則選擇C有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:都是的直徑,都是的弦,于點(diǎn),.
(1)如圖1,求證:;
(2)如圖2,延長交于點(diǎn),求證:;
(3)如圖3,在(2)的條件下,延長,交于點(diǎn),若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù) y=的圖象如圖所示,則二次函數(shù) y =ax 2-2x和一次函數(shù) y=bx+a 在同一平面直角坐標(biāo)系中的圖象可能是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com