如圖,BE,CD是△ABC的邊AC,AB上的中線,且相交于點(diǎn)F.
求:(1)的值;(2)的值.

【答案】分析:(1)連接DE,則DE為△ABC的中位線,根據(jù)中位線定理,三角形相似求解;
(2)由三角形相似的性質(zhì)得,又由相似比可知S△BFC=S△BDC=S△ABC,再求的值.
解答:解:(1)∵BE,CD是△ABC的邊AC,AB上的中線,
∴F是△ABC的重心(2分)
(2分)

(2)連接DE、AF并延長(zhǎng)AF交BC于G.
過A和F分別作BC的垂線,垂足H,K.(1分)
∵D,E是AB,AC邊上的中點(diǎn)
∴△ADE∽△ABC(2分)

,(1分)
∠FKB=∠AHB=90°,
∴FK∥AH,
∴△GKF∽△GHA,(2分)
,(1分)
.(1分)
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),三角形的重心性質(zhì).關(guān)鍵是由中位線定理得出相似比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依據(jù)是“
HL
”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,BE和CD是△ABC的高,它們相交于點(diǎn)O,且BE=CD,則圖中有
5
對(duì)全等三角形,其中根據(jù)“HL”來判定三角形全等的有
3
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,BE,CD是△ABC的邊AC,AB上的中線,且相交于點(diǎn)F.
求:(1)
DF
FC
的值;(2)
S△ADE
S△BFC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BE、CD是△ABC的中線,BE與CD相交于點(diǎn)G,S△GDE=1,則S△GCE=
2
2
;S△ADE=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BE、CD是△ABC的高,連DE.
(1)求證:AE•AC=AB•AD;
(2)若∠BAC=120゜,點(diǎn)M為BC的中點(diǎn),求證:DE=DM.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷