如圖,平面之間坐標系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=,經(jīng)過O,C兩點做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A       ,k=       ;

(2)隨著三角板的滑動,當a=1時:

①請你驗證:拋物的頂點在函數(shù)的圖象上;

②當三角板滑至點E為AB的中點時,求t的值。


(1)(t,);(k>0)。

2)①當a=時1,,其頂點坐標為。

對于,當x=時,!帱c在拋物線上。

∴當a=時,拋物線的頂點在函數(shù)的圖象上。

②如圖,過點E作EK⊥x軸于點K,

∵直角邊AC=,∴另一直角邊CB=2。

∵AC⊥x軸,∴AC∥EK。

∵點E是線段AB的中點,∴K為BC的中點。

∴EK是△ACB的中位線。

∴EK=AC=,CK=CB=1!郋(t+1,)。

∵點E在拋物線上,∴,解得

∴當三角板滑至點E為AB的中點時,

【考點】面動平移問題,曲線上點的坐標與方程的關系,二次函數(shù)的性質,三角形中位線定理,含30度直角三角形的性質。


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


如圖1,矩形ABCD中,AB=6,BC=8,點E、F分別是BC、CD邊上的點,且AE⊥EF,BE=2,

(1)求證:AE=EF;

(2)延長EF交矩形∠BCD的外角平分線CP于點P(圖2),試求AE與EP的數(shù)量關系;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知,大正方形的邊長為4,小正方形的邊長為2,狀態(tài)如圖所示.大正方形固定不動,把小正方形以的速度向大正方形的內部沿直線平移,設平移的時間為秒,兩個正方形重疊部分的面積為,完成下列問題:

(1).用的式子表示,要求畫出相應的圖形,表明的范圍;

(2).當,求重疊部分的面積;

(3).當,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.

(1)求證:△ADP∽△ABQ;

(2)若AD=10,AB=20,點P在邊CD上運動,設CP=x,BM2=y,求y與x的函數(shù)關系式,并求線段BM的最小值;

(3)若AD= a,AB=,DP=8,隨著a的大小的變化,點M的位置也在變化.當點M落在矩形ABCD內部時,求a的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,)兩點。

(1)求拋物線的解析式;

(2)將拋物線向下平移m個單位長度后,得到的拋物線與直線OB只有兩個公共點D,求m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,菱形ABCD的邊長為2,∠A=,動點P從點B出發(fā),沿B-C-D的路線向點D運動。設△ABP的面積為y (B、P兩點重合時,△ABP的面積可以看做0),點P運動的路程為x,則y與x之間函數(shù)關系的圖像大致為【    】

A.       B.        C.       D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在平面直角坐標系中,四邊形ABCO是梯形,其中A(4,0),B(3,),C(1,),動點P從點A以每秒1個單位的速度向點O運動,動點Q也同時從點A沿A→B→ C→O的線路以每秒2個單位的速度向點O運動,當點P到達A點時,點Q也隨之停止,設點P、Q運動的時間為t(秒)。求△OPQ的面積S與時間t的函數(shù)關系式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖9, 已知拋物線軸交于A (-4,0) 和B(1,0)兩點,與軸交于C點.

(1)求此拋物線的解析式;

(2)設E是線段AB上的動點,作EF//ACBCF,連接CE,當△CEF的面積是△BEF面積的2倍時,求E點的坐標;

(3)若P為拋物線上A、C兩點間的一個動點,過P軸的平行線,交ACQ,當P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,已知:拋物線C1,將拋物線C1向上平移m個單位(m>0)得拋物線C2,C2的頂點為G,與y軸交于M,點N是M關于x軸的對稱點,點P()在直線MG上。問:當m為何值時,在拋物線C2上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?

查看答案和解析>>

同步練習冊答案