【題目】(1)如圖所示,已知∠AOB90°,BOC30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度數(shù);

(2)如果(1)中∠AOBα其他條件不變,求∠MON的度數(shù);

(3)如果(1)中∠BOCβ(β為銳角),其他條件不變,求∠MON的度數(shù);

(4)(1)(2)(3)的結(jié)果中你能看出什么規(guī)律?

【答案】(1)45°(2)(3)45°(4)∠MON的大小總等于∠AOB的一半,與銳角∠BOC的大小無關(guān).

【解析】(1)先求出∠MOC的度數(shù):(90+30)÷2=60°,∠CON的度數(shù)是:30÷2=15°,然后用∠MOC的度數(shù)減去∠CON的度數(shù)即可得出∠MON的度數(shù).

(2)根據(jù)問題(1)的解題思路把∠AOB的度數(shù)用字母a代替即可.

(3)根據(jù)問題(1)的解題思路把∠BOC的度數(shù)用字母代替即可.

(4)根據(jù)(1)(2)(3)的得數(shù)可知:∠MON的度數(shù)是始終是∠AOB的度數(shù)的一半》

解:(1)因為OM平分∠AOC,

所以∠MOC=∠AOC.

又因為ON平分∠BOC,

所以∠NOC=∠BOC.

所以∠MON=∠MOC-∠NOC=∠AOC-∠BOC= (∠AOC-∠BOC)=∠AOB.

又因為∠AOB=90°,所以∠MON=45°.

(2)當(dāng)∠AOB=α,其他條件不變時,∠MON=.

(3)當(dāng)∠BOC=β,其他條件不變時,∠MON=45°.

(4)分析(1)(2)(3)的結(jié)果和(1)的解答過程可知:∠MON的大小總等于∠AOB的一半,與銳角∠BOC的大小無關(guān).

“點睛”本題考查了組合角中某個角的度數(shù)的求解,根據(jù)是明確各角之間的聯(lián)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,∠BAC120°,以CA為邊在∠ACB的另一側(cè)作∠ACM=∠ACB,點D為射線CM上任意一點,在射線CM上載取CEBD,連接AD、AE.

(1)如圖1,當(dāng)點D落在線段BC的延長線上時,求證:△ABD≌△ACE

(2)(1)的條件下,求出∠ADE的度數(shù);

(3)如圖2,當(dāng)點D落在線段BC(不含端點)上時,作AHBC,垂足為H,作AGEC,垂足為G,連接HG,判斷△GHC的形狀,并說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速,如圖,觀測點設(shè)在到縣城城南大道的距離為100米的點P處.這時,一輛出租車由西向東勻速行駛,測得此車從A處行駛到B處所用的時間為4秒,且∠APO=60°,∠BPO=45°

1)求AB之間的路程;

2)請判斷此出租車是否超過了城南大道每小時60千米的限制速度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點(點A在點B的左側(cè)),點A的坐標(biāo)為(﹣1,0),與y軸交于點C03),作直線BC.動點Px軸上運動,過點PPM⊥x軸,交拋物線于點M,交直線BC于點N,設(shè)點P的橫坐標(biāo)為m

)求拋物線的解析式和直線BC的解析式;

)當(dāng)點P在線段OB上運動時,求線段MN的最大值;

)當(dāng)以C、O、M、N為頂點的四邊形是平行四邊形時,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4cm,BC=6cm,∠B=60°,GCD的中點,E是邊AD上的動點(E不與A、D重合),且點EAD運動,速度為1cm/s,EG的延長線與BC的延長線交于點F,連接CE、DF,設(shè)點E的運動時間為

(1)求證:無論為何值,四邊形CEDF都是平行四邊形;

(2)①當(dāng)s,CEAD

②當(dāng),平行四邊形CEDF的兩條鄰邊相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在直角坐標(biāo)系中,已知A0,a),Bb,0C3c)三點,若ab,c滿足關(guān)系式:|a﹣2|+b﹣32+=0.

(1)求a,b,c的值.

(2)求四邊形AOBC的面積.

(3)是否存在點P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小靜帶著100元錢去文具店購買日記本,到文具店她發(fā)現(xiàn)該文具店對日記本正在開展¨滿10030”的促銷活動.即購買日記本的費用達(dá)到或超過100元就可以少付30.小靜通過計算發(fā)現(xiàn),在該店買6個日記本的費用比買5個日記本的費用低.請你計算一個日記本的價格可以是__________.(設(shè)日記本的價格為正整數(shù),請寫出所有可能的結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點,OA3,OB4,OC5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:OO′的距離為4AOB150°;.其中正確的結(jié)論是(

A. B. ①②C. ②③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.

(1)求溫馨提示牌和垃圾箱的單價各是多少元?

(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

同步練習(xí)冊答案