如圖,∠AOB=90°,0C⊥OD,且∠BOC=
23
∠AOC,求∠BOD,∠AOD的度數(shù).
分析:根據(jù)互余得到∠BOC+∠AOC=90°,把∠BOC=
2
3
∠AOC代入可計(jì)算出∠AOC=54°,由于0C⊥OD,則∠DOC=90°,根據(jù)等角的余角相等得到∠BOD=54°,然后利用∠AOD=∠DOC+∠AOC計(jì)算.
解答:解:∵∠BOC+∠AOC=90°,
而∠BOC=
2
3
∠AOC,
2
3
∠AOC+∠AOC=90°,
∴∠AOC=54°,
∵0C⊥OD,
∴∠DOC=90°,
∴∠BOD=∠AOC=54°,∠AOD=∠DOC+∠AOC=144°,
∴∠BOD,∠AOD的度數(shù)分別為54°,144°.
點(diǎn)評(píng):本題考查了余角和補(bǔ)角:如果兩個(gè)角的和等于90°(直角),就說(shuō)這兩個(gè)角互為余角.即其中一個(gè)角是另一個(gè)角的余角;如果兩個(gè)角的和等于180°(平角),就說(shuō)這兩個(gè)角互為補(bǔ)角.即其中一個(gè)角是另一個(gè)角的補(bǔ)角
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,∠AOB=90°,將三角尺的直角頂點(diǎn)落在∠AOB的平分線(xiàn)OC的任意一點(diǎn)P上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點(diǎn)E、F.
(1)證明:PE=PF;
(2)若OP=10,試探索四邊形PEOF的面積為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫(xiě)作法,保留作圖痕跡):作∠AOB的平分線(xiàn)OP;作過(guò)C、O、D三點(diǎn)的⊙E,與OP相交于F;連接CF、DF.
(2)在所畫(huà)圖中,△CDF是什么形狀?并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州)如圖,∠AOB=90°,∠BOC=30°,則∠AOC=
60
60
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

畫(huà)圖、證明:如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫(xiě)作法,保留作圖痕跡):作∠AOB的平分線(xiàn)OP;作線(xiàn)段CD的垂直平分線(xiàn)EF,分別與CD、OP相交于E、F;連接CF、DF.
(2)在所畫(huà)圖中,求證:△CDF為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,∠AOB=90°,∠AOC為銳角,且ON平分∠AOC,射線(xiàn)OM在∠BON內(nèi)部.
(1)請(qǐng)你數(shù)一數(shù),圖中共有多少個(gè)小于平角的角.
(2)如果∠AOC=50°,∠MON=45°.
①求∠AOM的度數(shù);
②請(qǐng)通過(guò)計(jì)算說(shuō)明OM是否平分∠BOC.
(3)如果∠AOC=x°,∠MON=45°,OM是否平分∠BOC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案