【題目】已知,正方形ABCD的邊長為6,菱形EFGH的三個(gè)頂點(diǎn)E,G,H分別在正方形ABCD邊AB,CD,DA上,AH=2.
(1)寫出菱形EFGH的邊長的最小值;
(2)請(qǐng)你探究點(diǎn)F到直線CD的距離為定值;
(3)連接FC,設(shè)DG=x,△FCG的面積為y;
①求y與x之間的函數(shù)關(guān)系式并求出y的取值范圍;
②當(dāng)x的長為何值時(shí),點(diǎn)F恰好在正方形ABCD的邊上.
【答案】(1)4;(2)見解析;(3)①y=6-x,6-2≤y≤6.②x=2時(shí),點(diǎn)F恰好在正方形ABCD的邊上.
【解析】
(1)當(dāng)HG⊥CD,即G與D重合時(shí),菱形EFGH的邊長最小,最小值為4.
(2)過點(diǎn)F作FN∥DM,根據(jù)平行公理可得FN∥AB,根據(jù)平行線的性質(zhì)可以得到∠1=∠2,∠3=∠4,再根據(jù)菱形的鄰角互補(bǔ)以及平角等于180°可以求出∠1=∠5,然后證明△AEH與△MGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得FM=AH,從而得到FM的值不會(huì)發(fā)生改變;
(3)①根據(jù)三角形的面積公式即可解決問題;
②如圖連接FH、EG交于點(diǎn)O,作FM⊥AD于M,GN⊥AB于N,FM交GN于J,交EG于K.只要證明四邊形EFGH是正方形,再證明∠EHA≌△HGD,推出DG=AH=2即可解決問題;
(1)當(dāng)HG⊥CD,即G與D重合時(shí),菱形EFGH的邊長最小,
∵AD=6,AH=2,
∴DH=4,
∴菱形EFGH的邊長的最小值為4.
(2)作FM⊥DC交DC的延長線于M,如圖,過點(diǎn)F作FN∥DM,
∵正方形ABCD中AB∥CD
∴FN∥AB,
∴∠1=∠2,∠3=∠4,
∵四邊形EFGH是菱形,
∴∠HEF+∠GFE=180°,
即∠2+∠3+∠HEF=180°,
又∠4+∠5+∠HEF=180°,
∴∠1=∠5,
在△AEH與△MGF中,
,
∴△AEH≌△MGF(AAS),
∴FM=AH,
∵AH=2,
∴FM=2,是常數(shù)不變;
(3)①結(jié)合圖形可得,y=CGFM=×(6-x)×2=6-x,
當(dāng)點(diǎn)G與D重合時(shí),x=0,y=6,可得y的最大值為6
當(dāng)點(diǎn)E與B重合時(shí),EH=GH=,
在Rt△DHG中,DG=,
此時(shí)x=2,y=6-2,可得y的最小值為6-2,
∴6-2≤y≤6.
②如圖連接FH、EG交于點(diǎn)O,作FM⊥AD于M,GN⊥AB于N,FM交GN于J,交EG于K.
∵四邊形EFGH是菱形,
∴FH⊥EG,易知GN⊥FM,
∴∠FOK=∠GJK=90°,
∵∠FKO=∠GKJ,
∴∠OFK=∠JGK,
∵FM=NG,∠FMH=∠GNE=90°,
∴△FMH≌△GNE,
∴EG=FH,
∴四邊形EFGH是正方形,
∴∠EHG=90°,
∵∠EHA+∠GHD=90°,∠GHD+∠HGD=90°,
∴∠EHA≌△HGD,
∴DG=AH=2.
∴x=2時(shí),點(diǎn)F恰好在正方形ABCD的邊上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們常見的汽車玻璃升降器如圖①所示,圖②和圖③是升降器的示意圖,其原理可以看作是主臂PB繞固定的點(diǎn)O旋轉(zhuǎn),當(dāng)端點(diǎn)P在固定的扇形齒輪上運(yùn)動(dòng)時(shí),通過叉臂式結(jié)構(gòu)(點(diǎn)B可在MN上滑動(dòng))的玻璃支架MN帶動(dòng)玻璃沿導(dǎo)軌作上下運(yùn)動(dòng)而達(dá)到玻璃升降目的.點(diǎn)O和點(diǎn)P,A,B在同一直線上.當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),窗戶完全閉合(圖②),此時(shí)∠ABC=30°;當(dāng)點(diǎn)P與點(diǎn)F重合時(shí),窗戶完全打開(圖③).已知的半徑OP=5cm,=cm,OA=AB=AC=20cm.
(1)當(dāng)窗戶完全閉合時(shí),OC=_____cm.
(2)當(dāng)窗戶完全打開時(shí),PC=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)不在原圖添加字母和線段,對(duì)△ABC只加一個(gè)條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將分別標(biāo)有數(shù)字1,6,8的三張卡片(卡片除所標(biāo)注數(shù)字外其他均相同)洗勻后,背面朝上放在桌面上.
(1)隨機(jī)抽取一張卡片,抽到的卡片所標(biāo)數(shù)字是偶數(shù)的概率為 ;
(2)隨機(jī)抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為十位上的數(shù)字(不放回),再隨機(jī)抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為個(gè)位上的數(shù)字,用列表或畫樹狀圖的方法求組成的兩位數(shù)恰好是“68”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小麗假期在娛樂場(chǎng)游玩時(shí),想要利用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量某個(gè)娛樂場(chǎng)地所在山坡AE的長度.她先在山腳下點(diǎn)E處測(cè)得山頂A的仰角是30°,然后,她沿著坡度是i=1:1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場(chǎng)地所在山坡AE的長度.(參考數(shù)據(jù):≈1.41,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10cm,cosB=點(diǎn)M、N分別是邊BC和AC上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M以2cm/s的速度沿C→B方向運(yùn)動(dòng),同時(shí)點(diǎn)N以1cm/s的速度沿A→C方向運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,四邊形ABMN的面積為S,則下列能大致反映S與t函數(shù)關(guān)系的圖象是( 。
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com