【題目】把一根長(zhǎng)為的鐵絲剪成兩段,并把每一段鐵絲圍成一個(gè)正方形.若設(shè)圍成的一個(gè)正方形的邊長(zhǎng)為.
(1)要使這兩個(gè)正方形的面積的和等于,則剪出的兩段鐵絲長(zhǎng)分別是多少?
(2)剪出的兩段鐵絲長(zhǎng)分別是多少時(shí),這兩個(gè)正方形的面積和最?最小值是多少?
【答案】(1)這根鐵絲剪成兩段后的長(zhǎng)度分別是,;(2)剪成兩段均為的長(zhǎng)度時(shí)面積之和最小,最小面積和為
【解析】
(1)根據(jù)題意可以列出相應(yīng)的方程,從而可以解答本題;
(2)根據(jù)題意可以得到面積和所截鐵絲的長(zhǎng)度之間的函數(shù)關(guān)系,然后二次函數(shù)的性質(zhì)即可解答本題.
解:(1)根據(jù)題意知:一個(gè)正方形的邊長(zhǎng)分別為,
則另一個(gè)正方形的邊長(zhǎng)為,
且分成的鐵絲一段長(zhǎng)度為,另一段為,
,
整理得:,
解得:,,
故這根鐵絲剪成兩段后的長(zhǎng)度分別是,;
(2)設(shè)這兩個(gè)正方形的面積之和為cm2,
,
∴當(dāng)時(shí),y取得最小值,最小值為cm2,
即剪成兩段均為的長(zhǎng)度時(shí)面積之和最小,最小面積和為cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),與y軸交于點(diǎn)B,與拋物線的對(duì)稱軸交于點(diǎn).
(1)求m的值;
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)N作垂直于y軸的直線與拋物線交于點(diǎn),(點(diǎn)P在點(diǎn)Q的左側(cè)).若恒成立,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在拋物線上,且該拋物線與軸分別交于點(diǎn)和點(diǎn),與軸交于點(diǎn).
(1)求拋物線的解析式及對(duì)稱軸;
(2)若點(diǎn)是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求的最小值;
(3)點(diǎn)是是拋物線上除點(diǎn)外的一點(diǎn),若與的面積相等,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),與軸交于兩點(diǎn)
求拋物線的解析式;
如圖1,直線交拋物線于兩點(diǎn),為拋物線上之間的動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn)于點(diǎn),求的最大值;
如圖2,平移拋物線的頂點(diǎn)到原點(diǎn)得拋物線,直線交拋物線于、兩點(diǎn),在拋物線上存在一個(gè)定點(diǎn),使,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,P為AB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.
(1)用直尺和圓規(guī)作⊙O,使它經(jīng)過(guò)A、B、D三點(diǎn)(保留作圖痕跡);
(2)點(diǎn)C是否在⊙O上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)請(qǐng)直接寫(xiě)出二次函數(shù)y=ax2+x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫(xiě)出此時(shí)點(diǎn)N的坐標(biāo);
(4)如圖2,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過(guò)點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別為AB,AC邊上一點(diǎn),且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,則四邊形CEDB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)是坐標(biāo)原點(diǎn),一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn).
(1)求的值.
(2)根據(jù)圖象寫(xiě)出當(dāng)時(shí),的取值范圍.
(3)若一次函數(shù)圖象與軸、軸分別交于點(diǎn),則求出的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com