【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正確的有( )

A.1個
B.2個
C.3個
D.4個

【答案】C
【解析】解:∵∠1=∠2

∴AB∥CD(內(nèi)錯角相等,兩直線平行)

所以①正確

∵AB∥CD(已證)

∴∠BAD+∠ADC=180°(兩直線平行,同旁內(nèi)角互補)

又∵∠BAD=∠BCD

∴∠BCD+∠ADC=180°

∴AD∥BC(同旁內(nèi)角互補,兩直線平行)

故②也正確

∵AB∥CD,AD∥BC(已證)

∴∠B+∠BCD=180°

∠D+∠BCD=180°

∴∠B=∠D(同角的補角相等)

所以③也正確.

正確的有3個,所以答案是:C.

【考點精析】通過靈活運用平行線的判定與性質(zhì),掌握由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年政府工作報告中指出,5年來我國有約80000000農(nóng)業(yè)轉(zhuǎn)移人口成為城鎮(zhèn)居民.用科學(xué)記數(shù)法表示數(shù)據(jù)80000000,其結(jié)果是( 。

A.80×106B.0.8×108C.8×107D.8×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自2014年12月28日北京公交地鐵調(diào)價以來,人們的出行成本發(fā)生了較大的變化. 小林根據(jù)新聞,將地鐵和公交車的票價繪制成了如下兩個表格。(說明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他類似)

北京地鐵新票價

里程范圍

對應(yīng)票價

0~6公里

3元

6~12公里

4元

12~22公里

5元

22~32公里

6元

32公里以上

每增加1元可再乘坐20公里

*持市政交通一卡通花費累計滿一定金額后可打折

北京公交車新票價

里程范圍

對應(yīng)票價

0~10公里

2元

10~15公里

3元

15~20公里

4元

20公里以上

每增加1元可再乘坐5公里

*持市政交通一卡通刷卡,普通卡打5折,
學(xué)生卡打2.5折

根據(jù)以上信息回答下列問題:
小林辦了一張市政交通一卡通學(xué)生卡,目前乘坐地鐵沒有折扣。
(1)如果小林全程乘坐地鐵的里程為14公里,用他的學(xué)生卡需要刷卡交費元;
(2)如果小林全程乘坐公交車的里程為16公里,用他的學(xué)生卡需要刷卡交元;
(3)小林用他的學(xué)生卡乘坐一段地鐵后換乘公交車,兩者累計里程為12公里。已知他乘坐地鐵平均每公里花費0.4元,乘坐公交車平均每公里花費0.25元,此次行程共花費4.5元。請問小林乘坐地鐵和公交車的里程分別是多少公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點F是AE的中點,F(xiàn)D與AB相交于點M.

(1)求證:∠FMC=∠FCM;
(2)AD與MC垂直嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示:﹣0.00002005=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(﹣x)3x2= , 0.000123用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多項式減去x2+14x﹣6,結(jié)果得到2x2﹣x+3,則這個多項式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,工程隊鋪設(shè)一公路,他們從點A處鋪設(shè)到點B處時,由于水塘擋路,他們決定改變方向經(jīng)過點C,再拐到點D,然后沿著與AB平行的DE方向繼續(xù)鋪設(shè),如果∠ABC=120°,∠CDE=140°,則∠BCD的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD的對角線AC,BD相交于點O,正方形A′B′C′D′的頂點A′與點O重合,A′B′交BC于點E,A′D′交CD于點F.
(1)求證:OE=OF;
(2)若正方形ABCD的對角線長為4,求兩個正方形重疊部分的面積為

查看答案和解析>>

同步練習(xí)冊答案