【題目】如圖,用同樣規(guī)格的規(guī)格黑白兩色正方形瓷磚鋪設(shè)矩形地面,請(qǐng)觀察圖形并解答有關(guān)問題.
在第個(gè)圖中,每一橫行共有________塊瓷磚,每豎行共有________塊瓷磚(均用含的代數(shù)式表示)
設(shè)鋪設(shè)地面所用的瓷磚總塊數(shù),寫出與的函數(shù)關(guān)系式(不寫的取值范圍)
按上述鋪設(shè)方案,鋪一塊這樣的地面共用了塊瓷磚,求此時(shí)的值.
【答案】(1)n+4,n+2;(2);(3)n=20
【解析】
(1)第一個(gè)圖每一橫行有5=1+4個(gè)瓷磚,豎列有3=1+2個(gè)瓷磚;第二個(gè)圖每一橫行有6=2+4個(gè)瓷磚,豎列有4=2+2個(gè)瓷磚;第n個(gè)圖每一橫行有n+4個(gè)瓷磚,豎列有n+2個(gè)瓷磚.
(2)根據(jù)(1)中橫行和數(shù)列的瓷磚數(shù),總數(shù)=橫行的瓷磚數(shù)×豎列的瓷磚數(shù).
(3)根據(jù)(2)列的關(guān)系式將528代入其中求解.
(1)通過觀察得:n=1時(shí),橫行有1+4塊,豎列有1+2塊,
n=2時(shí),橫行有2+4塊,豎列有2+2塊,
n=3時(shí),橫行有3+4塊,豎列有3+2塊,
…,
所以在第n個(gè)圖中,每一橫行共有n+4塊,每一豎列共有n+2塊,
故答案為:n+4,n+2;
(2)由(1)可得總塊數(shù)可表示為y=(n+4)(n+2);
(3)根據(jù)題意可得(n+4)(n+2)=528,
解得:n=20或n=-26,
∴n=20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是△ABC內(nèi)一點(diǎn),且DA=DB,E為△ABC外一點(diǎn),連接BE交AC于F,BE=BC,BD平分∠EBC,連接DE,CE,AD∥CE.
(1)求證:∠DAC=∠DBE;
(2)若AB=6,求△BEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:幾個(gè)全等的正多邊形依次有一邊重合,排成一圈,中間可以圍成一個(gè)正多邊形,我們稱作正多邊形的環(huán)狀連接。如圖,我們可以看作正六邊形的環(huán)狀連接,中間圍成一個(gè)邊長(zhǎng)相等的正六邊形;若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為;
若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為________,若邊長(zhǎng)為1的正n邊形作環(huán)狀連接,中間圍成的是等邊三角形,則這個(gè)環(huán)狀連接的外輪廓長(zhǎng)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法將關(guān)于的方程可以變形為,那么用配方法也可以將關(guān)于的方程變形為下列形式( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場(chǎng)服裝柜在銷售中發(fā)現(xiàn):某童裝平均每天可售出件,每件盈利元.為了迎接“六一”國(guó)際兒童節(jié),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)元,那么平均每天就可多售出件.要想平均每天銷售這種童裝共盈利元,設(shè)每件童裝降價(jià)元,那么應(yīng)滿足的方程是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”“10元”“20元”“30元”的字樣.規(guī)定:顧客在本超市一次性消費(fèi)滿200元,就可以在箱子里先后摸出2個(gè)小球(第一次摸出后不放回).某顧客剛好消費(fèi)200元,則該顧客所獲得購(gòu)物券的金額不低于30元的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察與探究:
(1)觀察下列各組數(shù)據(jù)并填空:
A:1,2,3,4,5,
平均數(shù)xA=________,方差sA2=________;
B:11,12,13,14,15,
平均數(shù)xB=________,方差sB2=________;
C:10,20,30,40,50,
平均數(shù)xC=________,方差sC2=________;
(2)分別比較A與B,C的計(jì)算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣4,0),B(2,0),與y軸交于點(diǎn)C.請(qǐng)解答下列問題:
(1)求拋物線的函數(shù)解析式并直接寫出頂點(diǎn)M坐標(biāo);
(2)連接AM,N是AM的中點(diǎn),連接BN,求線段BN長(zhǎng).
注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(﹣,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(觀察)
51×49=()2﹣()2
102×98=()2﹣()2
2001×1999=()2﹣()2
(發(fā)現(xiàn))根據(jù)閱讀回答問題
(1)請(qǐng)根據(jù)上面式子的規(guī)律填空:
998×1002= 2﹣ 2
(2)在上述乘法運(yùn)算中,設(shè)第一個(gè)因數(shù)為m,第二個(gè)因數(shù)為n,請(qǐng)用有m、n的符號(hào)語言寫出你所發(fā)現(xiàn)的規(guī)律,并證明.
(應(yīng)用)請(qǐng)運(yùn)用(發(fā)現(xiàn))中總結(jié)的規(guī)律計(jì)算:59.8×60.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com