【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它在以臺(tái)風(fēng)中心為圓心,一定長(zhǎng)度為半徑的圓形區(qū)域內(nèi)形成極端氣候,有極強(qiáng)的破壞力.如圖,監(jiān)測(cè)中心監(jiān)測(cè)到一臺(tái)風(fēng)中心沿監(jiān)測(cè)點(diǎn)B與監(jiān)測(cè)點(diǎn)A所在的直線由東向西移動(dòng),已知點(diǎn)C為一海港,且點(diǎn)C與A, B兩點(diǎn)的距離分別為300km、 400km,且∠ACB=90°,過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,以臺(tái)風(fēng)中心為圓心,半徑為260km的圓形區(qū)域內(nèi)為受影響區(qū)域.
(1)求監(jiān)測(cè)點(diǎn)A與監(jiān)測(cè)點(diǎn)B之間的距離;
(2)請(qǐng)判斷海港C是否會(huì)受此次臺(tái)風(fēng)的影響,并說(shuō)明理由;
(3)若臺(tái)風(fēng)的速度為25km/h,則臺(tái)風(fēng)影響該海港多長(zhǎng)時(shí)間?
【答案】(1)監(jiān)測(cè)點(diǎn)A與監(jiān)測(cè)點(diǎn)B之間的距離是500 km;(2)海港會(huì)受到此次臺(tái)風(fēng)的影響,見(jiàn)解析;(3)臺(tái)風(fēng)影響該海港8小時(shí)
【解析】
(1)利用勾股定理直接求解;
(2)利用等面積法得出CE的長(zhǎng),進(jìn)而得出海港C是否受臺(tái)風(fēng)影響;
(3)利用勾股定理得出受影響的界點(diǎn)P與Q離點(diǎn)E的距離,進(jìn)而得出臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間.
解:在中,,
由勾股定理得
答:監(jiān)測(cè)點(diǎn)A與監(jiān)測(cè)點(diǎn)B之間的距離是500 km.
(2)海港C會(huì)受到此次臺(tái)風(fēng)的影響,理由如下:
∵,
∴
解得:.
∵
∴海港會(huì)受到此次臺(tái)風(fēng)的影響.
(3)如圖,海港C在臺(tái)風(fēng)中心從Q點(diǎn)移動(dòng)到P點(diǎn)這段時(shí)間內(nèi)受影響.
∵
∴在中,,即
解得:PE=100
同理得:
∵臺(tái)風(fēng)的速度為25km/h
∴臺(tái)風(fēng)影響該海港的時(shí)長(zhǎng)為:
答:臺(tái)風(fēng)影響該海港8小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn),且∠EAF=60°,請(qǐng)?zhí)骄繄D中線段BE,EF,FD之間的數(shù)量關(guān)系是什么?
小明探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進(jìn)而可得線段BE,EF,FD之間的數(shù)量關(guān)系是 .
(2)拓展應(yīng)用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD.問(wèn)(1)中的線段BE,EF,FD之間的數(shù)量關(guān)系是否還成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,直線經(jīng)過(guò)點(diǎn),且于點(diǎn),于點(diǎn).易得(不需要證明).
(1)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),其余條件不變,你認(rèn)為上述結(jié)論是否成立?若成立,寫出證明過(guò)程;若不成立,請(qǐng)寫出此時(shí)之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),其余條件不變,請(qǐng)直接寫出此時(shí)之間的數(shù)量關(guān)系(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)用圖形變換(對(duì)稱、平移或旋轉(zhuǎn))解決下列各題:
(1)如圖1,在四邊形ABCD中,AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12,若P是邊AD上的任意一點(diǎn),則△BPC周長(zhǎng)的最小值為 .
(2)如圖2,已知M(0,1)、P(2+,3)、E(a,0)、F(a+1,0),問(wèn)a為何值時(shí),四邊形PMEF的周長(zhǎng)最小?
(3)如圖3,P為等邊△ABC內(nèi)一點(diǎn),且PB=2,PC=3,∠BPC=150°,M、N為邊AB、AC上的動(dòng)點(diǎn),且AM=AN,請(qǐng)直接寫出PM+PN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE交AB于點(diǎn)F,⊙O的切線BC與AD的延長(zhǎng)線交于點(diǎn)C,連接AE.
(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若AD=3,∠C=60°,點(diǎn)E是半圓AB的中點(diǎn),則線段AE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中(如圖),拋物線y=ax2-4與x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,AB=2.點(diǎn)P在拋物線上,線段AP與y軸的正半軸交于點(diǎn)C,線段BP與x軸相交于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求這條拋物線的解析式;
(2)用含m的代數(shù)式表示線段CO的長(zhǎng);
(3)當(dāng)tan∠ODC=時(shí),求∠PAD的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,一個(gè)多邊形的每一個(gè)外角都是它相鄰的內(nèi)角的.試求出:(1)這個(gè)多邊形的每一個(gè)外角的度數(shù);(2)求這個(gè)多邊形的內(nèi)角和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,等邊的邊長(zhǎng)為,點(diǎn)分別從、兩點(diǎn)同時(shí)出發(fā),點(diǎn)沿向終點(diǎn)運(yùn)動(dòng),速度為;點(diǎn)沿,向終點(diǎn)運(yùn)動(dòng),速度為,設(shè)它們運(yùn)動(dòng)的時(shí)間為.
(1)當(dāng)為何值時(shí),?當(dāng)為何值時(shí),?
(2)如圖②,當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),與的高交于點(diǎn),與是否總是相等?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)某路口的行人,可能直行,也可能左拐或右拐.假設(shè)這三種可能性相同,現(xiàn)有兩人經(jīng)過(guò)該路口,求下列事件的概率:
(1)“兩人都左拐”的概率是 ;恰好有一人直行,另一人左拐的概率是 ;
(2)利用列表法或樹(shù)狀圖求出“至少有一人直行”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com