【題目】如圖,已知直線l1∥l2 , 直線l和直線l1、l2分別交于點(diǎn)C和D,在直線l上有一點(diǎn)P(點(diǎn)P與點(diǎn)C,D不重合),點(diǎn)A在直線l1上,點(diǎn)B在直線l2上.
(1)當(dāng)點(diǎn)P在C,D之間運(yùn)動(dòng)時(shí),試說(shuō)明:∠PAC+∠PBD=∠APB;
(2)當(dāng)點(diǎn)P在直線l1的上方運(yùn)動(dòng)時(shí),試探索∠PAC、∠APB、∠PBD之間的關(guān)系又是如何?為什么?
【答案】
(1)解:如圖,延長(zhǎng)AP交DB于H,
∵AC∥BH,
∴∠PAC=∠PHB,
∵∠APB=∠PBD+∠PHB,
∴∠APB=∠PAC+∠PBD
(2)解:如圖,∠PBD=∠PAC+∠APB.
理由:∵AC∥BD,
∴∠PHC=∠PBD,
∵∠PHC=∠PAC+∠APB,
∴∠PBD=∠APB+∠PAC
【解析】(1)延長(zhǎng)AP交DB于H,根據(jù)平行線的性質(zhì)以及三角形外角的性質(zhì)即可解決問(wèn)題.(2)結(jié)論:,∠PBD=∠PAC+∠APB.證明方法類似
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的性質(zhì)的相關(guān)知識(shí),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下可以用來(lái)證明命題“任何偶數(shù)都是4的倍數(shù)”是假命題的反例為( 。
A. 3 B. 4 C. 8 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A. 2a2a3=2a6 B. (3ab)2=6a2b2 C. 2abc+ab=2 D. 3a2b+ba2=4a2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x的相反數(shù)是2,|y|=6,則x+y的值是( 。
A. ﹣8 B. 4 C. ﹣8或4 D. 8或4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李在解方程5a﹣x=13(x為未知數(shù))時(shí),誤將﹣x看作+x,得方程的解為x=﹣2,那么原方程的解為( )
A.x=﹣3
B.x=0
C.x=2
D.x=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為5,若PO=4,則點(diǎn)P與⊙O的位置關(guān)系是( )
A.點(diǎn)P在⊙O內(nèi)B.點(diǎn)P在⊙O上C.點(diǎn)P在⊙O外D.無(wú)法判斷
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(13分)如圖所示,四邊形中, 于點(diǎn), , ,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn)。
(1)求證: 。
(2)過(guò)點(diǎn)分別作于點(diǎn),作于點(diǎn)。
① 試說(shuō)明為定值。
② 連結(jié),試探索:在點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn),使的值最小。若存在,請(qǐng)求出該最小值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com