【題目】一個幾何體的主視圖、俯視圖和左視圖都是大小相同的圓,則這個幾何體是

【答案】球體
【解析】解:球的主視圖、左視圖、俯視圖都是圓,所以答案是:球體.
【考點精析】本題主要考查了由三視圖判斷幾何體的相關(guān)知識點,需要掌握在三視圖中,通過主視圖、俯視圖可以確定組合圖形的列數(shù);通過俯視圖、左視圖可以確定組合圖形的行數(shù);通過主視圖、左視圖可以確定行與列中的最高層數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】50個數(shù)據(jù)分成5組,第1、23、4組的頻數(shù)分別是2、810、15,則第5組的頻率為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE是ABC的中位線,延長DE到F,使EF=DE,連接BF

(1)求證:BF=DC;

(2)求證:四邊形ABFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a=(-99)0 , b=(-0.1)-1c=(- -2 , 那么a , bc三數(shù)的大小為( 。


A.abc

B.cab

C.acb

D.

cba

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EG⊥BC于點G,AD⊥BC于點D,∠1=∠E,請證明AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ΔABC中點DBC上一點,EAC上一點,連接ADBE、DE,已知BD=DE,AD=DC,∠ADB=∠CDE.

(1)如圖1,若∠ACB=40°時,求∠BAC的度數(shù).

(2)如圖2,FBE的中點,過點FAD的垂線,分別交AD、AC于點G、H,求證:AH=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題提出】

用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

【問題探究】

不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過試驗、觀察、類比、最后歸納、猜測得出結(jié)論.

【探究一】

(1)用3根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

此時,顯然能搭成一種等腰三角形.

所以,當n=3時,m=1.

(2)用4根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.

所以,當n=4時,m=0.

(3)用5根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.

所以,當n=5時,m=1.

(4)用6根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.

所以,當n=6時,m=1.

綜上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一個三角形,能搭成多少種不同的三角形?

(仿照上述探究方法,寫出解答過程,并將結(jié)果填在表②中)

(2)用8根、9根、10根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

(只需把結(jié)果填在表②中)

表②

你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,…

【問題解決】:

用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)

表③

【問題應(yīng)用】:

用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(寫出解答過程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x24x5=0時,原方程應(yīng)變形為(

A.x+12=6B.x+22=9C.x12=6D.x22=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值: (a2bab2)(1ab2a2b) ,其中 a=3, b=2 .

查看答案和解析>>

同步練習(xí)冊答案