【題目】若存在正常數(shù)a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,則稱f(x)為“限增函數(shù)”.給出下列三個函數(shù):①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函數(shù)”的是(
A.①②③
B.②③
C.①③
D.③

【答案】B
【解析】解:對于①,f(x+a)≤f(x)+b可化為:(x+a)2+(x+a)+1≤x2+x+1+b, 即2ax≤﹣a2﹣a+b,即x≤ 對一切x∈R均成立,
由函數(shù)的定義域為R,故不存在滿足條件的正常數(shù)a、b,故f(x)=x2+x+1不是“限增函數(shù)”;
對于②,若f(x)= 是“限增函數(shù)”,則f(x+a)≤f(x)+b可化為: +b,
∴|x+a|≤|x|+b2+2b 恒成立,又|x+a|≤|x|+a,∴|x|+a≤|x|+b2+2b ,∴ ,
顯然當a<b2時式子恒成立,∴f(x)= 是“限增函數(shù)”;
對于③,∵﹣1≤f(x)=sin(x2)≤1,∴f(x+a)﹣f(x)≤2,
∴當b≥2時,a為任意正數(shù),使f(x+a)≤f(x)+b恒成立,故f(x)=sin(x2)是“限增函數(shù)”.
故選B.
【考點精析】通過靈活運用全稱命題,掌握全稱命題,,它的否定,;全稱命題的否定是特稱命題即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】表為小潔打算在某電信公司購買一支MAT手機與搭配一個門號的兩種方案.此公司每個月收取通話費與月租費的方式如下:若通話費超過月租費,只收通話費;若通話費不超過月租費,只收月租費.若小潔每個月的通話費均為x元,x為400到600之間的整數(shù),則在不考慮其他費用并使用兩年的情況下,x至少為多少才會使得選擇乙方案的總花費比甲方案便宜?( 。

甲方案

乙方案

門號的月租費(元)

400

600

MAT手機價格(元)

15000

13000

注意事項:以上方案兩年內(nèi)不可變更月租費


A.500
B.516
C.517
D.600

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把函數(shù)f(x)= cos2x﹣sin2x的圖象向右平移 個單位得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在下列哪個區(qū)間是單調(diào)遞減的(
A.[﹣ ,0]
B.[﹣π,0]
C.[﹣ , ]
D.[0, ]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若存在正實數(shù)m,使得關于x的方程x+a(2x+2m﹣4ex)[ln(x+m)﹣lnx]=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的焦距為2,點Q( ,0)在直線l:x=3上.
(1)求橢圓C的標準方程;
(2)若O為坐標原點,P為直線l上一動點,過點P作直線與橢圓相切點于點A,求△POA面積S的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F(xiàn)分別是AB,AC上的點,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若線段EF,BC的中點分別為M,N,則 的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為 . (I)求曲線C2的直角坐標系方程;
(II)設M1是曲線C1上的點,M2是曲線C2上的點,求|M1M2|的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知事件“在矩形ABCD的邊CD上隨機取一點P,使△APB的最大邊是AB”發(fā)生的概率為 ,則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,大偉同學觀察后得出了以下四條結(jié)論:①a<0,b>0,c>0;②b2﹣4ac=0;③ <c;④關于x的一元二次方程ax2+bx+c=0有一個正根,你認為其中正確的結(jié)論有(
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

同步練習冊答案