【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O于點E.
(1) 求證:AC平分∠DAB;
(2) 連接BE交AC于點F,若cos∠CAD=,求的值.
【答案】(1) 詳見解析;(2).
【解析】
試題分析:(1) 連接OC,由已知條件易得∠CAD=∠OCA,∠OCA=∠OAC,所以∠CAD=∠CAO,即可得AC平分∠DAB;(2).連接BE交OC于點H,易證OC⊥BE,可知∠OCA=∠CAD,因COS∠HCF=,可設HC=4,FC=5,則FH=3.由△AEF∽△CHF,設EF=3x,則AF=5x,AE=4x,所以OH=2x ,在△OBH中,由勾股定理列方程求解即可.
試題解析:(1)證明:連接OC,則OC⊥CD,
又AD⊥CD,
∴AD∥OC,
∴∠CAD=∠OCA,
又OA=OC,∴∠OCA=∠OAC,
∴∠CAD=∠CAO,
∴AC平分∠DAB.
(2)解:連接BE交OC于點H,易證OC⊥BE,可知∠OCA=∠CAD,
∴COS∠HCF=,設HC=4,FC=5,則FH=3.
又△AEF∽△CHF,設EF=3x,則AF=5x,AE=4x,∴OH=2x
∴BH=HE=3x+3 OB=OC=2x+4
在△OBH中,(2x)2+(3x+3)2=(2x+4)2
化簡得:9x2+2x-7=0,解得:x=(另一負值舍去).
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設P是關于x的5次多項式,Q是關于x的3次多項式,則 ( )
A. P+Q是關于x的8次多項式 B. P-Q是關于x的二次多項式
C. 2P+5Q是關于x的8次多項式 D. 2P—5Q是關于x的五次多項式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級(1)班全體學生2018年初中畢業(yè)體育考試的成績統(tǒng)計如表:
成績(分) | 20 | 22 | 24 | 26 | 28 | 30 |
人數(shù)(人) | 1 | 5 | 4 | 10 | 15 | 10 |
根據(jù)表中的信息判斷,下列結論中錯誤的是( 。
A. 該班一共有45名同學
B. 該班學生這次考試成績的眾數(shù)是28
C. 該班學生這次考試成績的平均數(shù)是25
D. 該班學生這次考試成績的中位數(shù)是28
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com