【題目】如圖所示,小明在自家樓頂上的點A處測量建在與小明家樓房同一水平線上鄰居的電梯的高度,測得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)

【答案】解:過點A作AE⊥BC于E,

∵AD⊥CD,BC⊥CD,
∴四邊形ADCE是矩形,
∴CE=AD=15米,
在Rt△ACE中,AE= ≈30.6(米),
在Rt△ABE中,BE=AEtan45°=30.6(米),
∴BC=CE+BE=15+30.6=45.6(米).
答:電梯樓的高度BC為45.6米.
【解析】首先過點A作AE⊥BC于E,可得四邊形ADCE是矩形,即可得CE=AD=15米,然后分別在Rt△ACE中,AE= 與在Rt△ABE中,BE=AEtan45°,即可求得BE的長,繼而求得電梯樓的高度.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點D,E,過劣弧 (不包括端點D,E)上任一點P作⊙O的切線MN與AB,BC分別交于點M,N,若⊙O的半徑為r,則Rt△MBN的周長為( 。
A.r
B. ?r
C.2r
D. ?r

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、B、C、DE在同一直線上,且ACBD,E是線段BC的中點.

(1)點E是線段AD的中點嗎?說明理由;

(2)當AD=10,AB=3時,求線段BE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F分別是BC、CD上的點,且CE=CF,點P、Q分別是AF、EF的中點,連接PD、PQ、DQ,則PQD的形狀是(  )

A. 等腰三角形 B. 直角三角形

C. 等腰非直角三角形 D. 等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AC=a,AB與BC所在直線成45°角,AC與BC所在直線形成的夾角的余弦值為 (即cosC= ),則AC邊上的中線長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廣告公司招標了一批燈箱加工工程,需要在規(guī)定時間內(nèi)加工1400個燈箱,該公司按一定速度加工5天后,發(fā)現(xiàn)按此速度加工下去會延期10天完工,于是又抽調(diào)了一批工人投入燈箱加工,使工作效率提高了50%,結果如期完成工作.

(1)求該公司前5天每天加多少個燈箱;

(2)求規(guī)定時間是多少天.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=2,AC=BC=

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,SABD= SABC
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉化為一元二次方程求解.如解方程:y4﹣4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2﹣4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=﹣1.
當x2=3,即y2=3,∴y3= ,y4=﹣
所以,原方程的解是y1=1,y2=﹣1,y3= ,y4=﹣
再如x2﹣2=4 ,可設y= ,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,連接BC.

(1)求點A、B、C的坐標.
(2)點P為AB上的動點(點A、O、B除外),過點P作直線PN⊥x軸,交拋物線于點N,交直線BC于點M.設點P到原點的值為t,MN的長度為s,求s與t的函數(shù)關系式.
(3)在(2)的條件下,試求出在點P運動的過程中,由點O、P、N圍成的三角形與Rt△COB相似時點P的坐標.

查看答案和解析>>

同步練習冊答案