【題目】已知如圖①,BP、CP分別是△ABC的外角∠CBD、∠BCE的角平分線,BQ、CQ分別是∠PBC、∠PCB的角平分線,BM、CN分別是∠PBD、∠PCE的角平分線,∠BAC=α.
(1)當(dāng)α=40°時,∠BPC= °,∠BQC= °;
(2)當(dāng)α= °時,BM∥CN;
(3)如圖②,當(dāng)α=120°時,BM、CN所在直線交于點(diǎn)O,求∠BOC的度數(shù);
(4)在α>60°的條件下,直接寫出∠BPC、∠BQC、∠BOC三角之間的數(shù)量關(guān)系: .
【答案】(1)70, 125;(2)60;(3)45°;(4)∠BPC+∠BQC+∠BOC=180°.
【解析】
(1)根據(jù)三角形的外角性質(zhì)分別表示出∠DBC與∠BCE,再根據(jù)角平分線的性質(zhì)可求得∠CBP+∠BCP,最后根據(jù)三角形內(nèi)角和定理即可求解;根據(jù)角平分線的定義得出∠QBC=∠PBC,∠QCB=∠PCB,求出∠QBC+∠QCB的度數(shù),根據(jù)三角形內(nèi)角和定理求出即可;
(2)根據(jù)平行線的性質(zhì)得到∠MBC+∠NCB=180°,依此求解即可;
(3)根據(jù)題意得到∠MBC+∠NCB,再根據(jù)三角形外角的性質(zhì)和三角形內(nèi)角和定理得到∠BOC的度數(shù);
(4)分別用∠A表示出∠BPC、∠BQC、∠BOC,再相加即可求解.
解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,
∴∠DBC+∠BCE=180°+∠A=220°,
∵BP、CP分別是△ABC的外角∠CBD、∠BCE的角平分線,
∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,
∴∠BPC=180°﹣110°=70°,
∵BQ、CQ分別是∠PBC、∠PCB的角平分線,
∴∠QBC=∠PBC,∠QCB=∠PCB,
∴∠QBC+∠QCB=55°,
∴∠BQC=180°﹣55°=125°;
(2)∵BM∥CN,
∴∠MBC+∠NCB=180°,
∵BM、CN分別是∠PBD、∠PCE的角平分線,∠BAC=α,
∴(∠DBC+∠BCE)=180°,
即(180°+α)=180°,
解得α=60°;
(3)∵α=120°,
∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,
∴∠BOC=225°﹣180°=45°;
(4)∵α>60°,
∠BPC=90°﹣α
∠BQC=135°﹣α
∠BOC=α﹣45°.
∠BPC、∠BQC、∠BOC三角之間的數(shù)量關(guān)系:∠BPC+∠BQC+∠BOC=(90°﹣α)+(135°﹣α)+(α﹣45°)=180°.
故答案為:70,125;60;∠BPC+∠BQC+∠BOC=180°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:
(2)如圖,在矩形 ABCD 中,AE 平分∠BAD,交 BC 于點(diǎn) E,過點(diǎn) E 作 EF⊥AD 于點(diǎn) F,求證:四邊形ABEF 是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的科學(xué)素養(yǎng)競賽中,每班參加比賽的人數(shù)相同,成績分為A,B,C,D四個等級,其中相應(yīng)等級的得分依次記為90分,80分,70分,60分,學(xué)校將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計(jì)圖:
請你根據(jù)以上提供的信息解答下列問題
(1)此次競賽中二班成績在70分以上(包括70分)的人數(shù)為___;
(2)請你將表格補(bǔ)充完整:
(3)請根據(jù)上述圖表對這次競賽成績進(jìn)行分析,寫出兩個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程,解應(yīng)用題
甲乙兩人相約周末到影院看電影,他們的家分別距離影院1200米和2000米,兩人分別從家中同時出發(fā),已知甲和乙的速度比是,結(jié)果甲比乙提前4分鐘到達(dá)影院.
(1)求甲、乙兩人的速度?
(2)在看電影時,甲突然接到家長電話讓其15分鐘內(nèi)趕回家,時間緊迫改變速度,比來時每分鐘多走25米,甲是否能按要求時間到家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級共有三個班,都參加了學(xué)校舉行的書法繪畫大賽,三個班根據(jù)初賽成績分別選出了10名同學(xué)參加決賽(滿分100分),如下表所示:
解答下列問題:
(1)請?zhí)顚懴卤恚?/span>
(2)請從以下兩個不同的角度對三個班級的決賽成績進(jìn)行
①從平均數(shù)和眾數(shù)相結(jié)合看(分析哪個班級成績好);
②從平均數(shù)和中位數(shù)相結(jié)合看(分析哪個班級成績好);
(3)如果在每個班級參加決賽的選手中選出3人參加總決賽,你認(rèn)為哪個班級的實(shí)力更強(qiáng)一些,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,給出如下定義:已知兩個函數(shù),如果對于任意的自變量x,這兩個函數(shù)對應(yīng)的函數(shù)值記為y1、y2,都有點(diǎn)(x,y1)和(x,y2)關(guān)于點(diǎn)(x,x)中心對稱(包括三個點(diǎn)重合時),由于對稱中心都在直線y=x上,所以稱這兩個函數(shù)為關(guān)于直線y=x的特別對稱函數(shù).例如:y=x和y=為關(guān)于直線y=x的特別對稱函數(shù).
(1)若y=3x+2和y=kx+t(k≠0)為關(guān)于直線y=x的特別對稱函數(shù),點(diǎn)M(1,m)是y=3x+2上一點(diǎn).
①點(diǎn)M(1,m)關(guān)于點(diǎn)(1,1)中心對稱的點(diǎn)坐標(biāo)為 .
②求k、t的值.
(2)若y=3x+n和它的特別對稱函數(shù)的圖象與y軸圍成的三角形面積為2,求n的值.
(3)若二次函數(shù)y=ax2+bx+c和y=x2+d為關(guān)于直線y=x的特別對稱函數(shù).
①直接寫出a、b的值.
②已知點(diǎn)P(﹣3,1)、點(diǎn)Q(2,1),連結(jié)PQ,直接寫出y=ax2+bx+c和y=x2+d兩條拋物線與線段PQ恰好有兩個交點(diǎn)時d的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3…都在x軸上,點(diǎn)B1,B2,B3…都在直線y=x上,OA1=1,且△B1A1A2,△B2A2A3,△B3A3A4,…△Bn A n A n+1…分別是以A1,A2,A3,…An…為直角頂點(diǎn)的等腰直角三角形,則△B10A10A11的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,延長AE交BC的延長線于點(diǎn)F.
(1)求證:△DAE≌△CFE;
(2)若AB=BC+AD,求證:BE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com