(2010•涼山州)一只口袋中放著若干個黃球和綠球,這兩種球除了顏色之外沒有其它任何區(qū)別,袋中的球已經(jīng)攪勻,從口袋中取出一個球取出黃球的概率為
(1)取出綠球的概率是多少?
(2)如果袋中的黃球有12個,那么袋中的綠球有多少個?
【答案】分析:(1)取出綠球的概率=1-取出黃球的概率;
(2)關(guān)系式為:=取出綠球的概率.
解答:解:(1)P(取出綠球)=1-P(取出黃球)=1-=

(2)設(shè)袋中有綠球x個.
根據(jù)題意,得:=
解得:x=18,
經(jīng)檢驗:x=18是所列方程的解.
答:袋中的綠球有18個.
點評:分析題意,找到合適的等量關(guān)系是解決問題的關(guān)鍵.注意應(yīng)用前面得到的結(jié)論.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比;組成整體的各部分的概率之和為1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(01)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•涼山州)已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-4),與x軸交于A、B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線的對稱軸交于點E,依次連接A、D、B、E,點Q為線段AB上一個動點(Q與A、B兩點不重合),過點Q作QF⊥AE于F,QG⊥DB于G,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點H是線段EQ上一點,過點H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(02)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省涼山州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•涼山州)已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-4),與x軸交于A、B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線的對稱軸交于點E,依次連接A、D、B、E,點Q為線段AB上一個動點(Q與A、B兩點不重合),過點Q作QF⊥AE于F,QG⊥DB于G,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點H是線段EQ上一點,過點H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年北京市海淀區(qū)中考數(shù)學(xué)試卷(2)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案