【題目】如圖,正方形ABCD的對角線相交于點O,∠CAB的平分線分別交BD、BC于E、F,作BH⊥AF于點H,分別交AC、CD于點G、P,連結GE、GF.
(1)試判斷四邊形BEGF的形狀并說明理由.
(2)求的值.
【答案】(1)四邊形BEGF是菱形;(2)1+.
【解析】
(1)先證明△AHG≌△AHB,得出GH=BH,由線段垂直平分線的性質得出EG=EB,FG=FB;再證出∠BEF=∠BFE,得出EB=FB,因此EG=EB=FB=FG,即可得出結論;
(2)設OA=OB=OC=a,菱形BEGF的邊長為b,由菱形的性質CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b);然后在Rt△GOE中,由勾股定理可得a和b的關系,通過相似三角形△CGP∽△AGB的對應邊成比例得到:,即可得到答案.
(1)四邊形BEGF是菱形.理由如下:
∵∠GAH=∠BAH,AH=AH,∠AHG=∠AHB=90°,∴△AHG≌△AHB,∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,FG=FB.
∵∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形.
(2)設OA=OB=OC=a,菱形BEGF的邊長為b.
∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b.
∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°
∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠GAH=∠OBG,∴△OAE≌△OBG,∴OG=OE=a﹣b,AE=BG.
∵在Rt△GOE中,GEOG,∴b(a﹣b),整理得:ab,∴AC=2a=(2)b,AG=AC﹣CG=(1)b.
∵PC∥AB,∴△ABG∽△CPG,∴,∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過、作x軸的垂線,分別交直線于C、D兩點拋物線經過O、C、D三點.
求拋物線的表達式;
點M為直線OD上的一個動點,過M作x軸的垂線交拋物線于點N,問是否存在這樣的點M,使得以A、C、M、N為頂點的四邊形為平行四邊形?若存在,求此時點M的橫坐標;若不存在,請說明理由;
若沿CD方向平移點C在線段CD上,且不與點D重合,在平移的過程中與重疊部分的面積記為S,試求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍.
(2)是否存在實數(shù)k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以BC為直徑的⊙O交的邊AB于E,點D在⊙O上,且DE∥BC,連BD并延長交CA于F,∠CBF=∠A.
(1)求證:CA是⊙O的切線;
(2)若⊙O的半徑為2,BD=2BE,則DE長為 (直接寫答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.
(1)求口袋中黃球的個數(shù);
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A. “打開電視機,正在播世界杯足球賽”是必然事件
B. “擲一枚硬幣正面朝上的概率是”表示每拋擲硬幣2次就有1次正面朝上
C. 一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D. 甲組數(shù)據(jù)的方差S甲2=0.09,乙組數(shù)據(jù)的方差S乙2=0.56,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,…,照此規(guī)律排列下去,則第8個圖中小正方形的個數(shù)是( 。
A. 48B. 63C. 80D. 99
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經過點A,B,C,已知點A(﹣1,0),點C(0,3).
(1)求拋物線的表達式;
(2)P為線段BC上一點,過點P作y軸的平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)設E是拋物線上的一點,在x軸上是否存在點F,使得A,C,E,F為頂點的四邊形是平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+5與y軸交于點A,與x軸交于點B.拋物線y=﹣x2+bx+c過A、B兩點.
(1)點A,B的坐標分別是A ,B ;
(2)求拋物線的解析式;
(3)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一動點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com