分析 (1)過(guò)點(diǎn)P作PH⊥BC于點(diǎn)H,連接PA、PC、PD,在直角△PHC中即可解出半徑長(zhǎng)度;
(2)延長(zhǎng)AI交⊙P于點(diǎn)E,連接PE交BC于點(diǎn)F,連接CE、PB、PC、IC,過(guò)點(diǎn)B作BH⊥AC于點(diǎn)H,利用邊角關(guān)系,用AP表示出來(lái)AI,即可解決;
(3)過(guò)點(diǎn)A作AE∥BC,交⊙P于點(diǎn)E,連接PE、CE,過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,借助△ABD≌△ECF找出邊角關(guān)系,用AP表示出DC和BD即可得出結(jié)論.
解答 解:(1)過(guò)點(diǎn)P作PH⊥BC于點(diǎn)H,連接PA、PC、PD,如圖1,
∵∠ACB=45°,
∴CD=AD=5,
在△PAD和△PCD中,$\left\{\begin{array}{l}{PA=PC(半徑)}\\{CD=AD}\\{PD=PD}\end{array}\right.$,
∴△PAD≌△PCD(SSS),
∴∠PDC=∠PDA=45°,
∴PH=DH=BH-BD=2,
又∵CH=3,
∴由勾股定理知:PC=$\sqrt{P{H}^{2}+C{H}^{2}}$=$\sqrt{13}$.
(2)延長(zhǎng)AI交⊙P于點(diǎn)E,連接PE交BC于點(diǎn)F,連接CE、PB、PC、IC,過(guò)點(diǎn)B作BH⊥AC于點(diǎn)H,如圖2,
∠EIC=∠IAC+∠ICA=52.5°,∠ECI=∠BCE+∠ICB=52.5°,
∴∠EIC=∠ECI,
∴EI=EC,
∵∠EPC=2∠CAE=60°(圓心角等于圓周角的2倍),
∴△PCE是等邊三角形,
∴CE=PC=AP,
∴IE=AP,
∵∠CAE=30°,∠ACE=75°,
∴∠AEC=75°=∠ACE,
∴AC=AE=AI+IE=AI+AP,
∵∠BAE=∠CAE,
∴$\widehat{BE}$=$\widehat{CE}$,
∴PE⊥BC,
∴BC=2BF=2×$\frac{\sqrt{3}}{2}$PB=$\sqrt{3}$AP,
∴CH=$\frac{\sqrt{2}}{2}$BC=$\frac{\sqrt{6}}{2}$AP,
又∵AH=$\frac{\sqrt{3}}{3}$BH=$\frac{\sqrt{3}}{3}$CH=$\frac{\sqrt{2}}{2}$AP,
∴AI+AP=AC=$\frac{\sqrt{2}}{2}$AP+$\frac{\sqrt{6}}{2}$AP,
∴$\frac{AI}{AP}$=$\frac{\sqrt{2}+\sqrt{6}-2}{2}$.
(3)過(guò)點(diǎn)A作AE∥BC,交⊙P于點(diǎn)E,連接PE、CE,過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,如圖3,
∵AE∥BC,
∴$\widehat{AB}$=$\widehat{CE}$,
∴AB=CE,
∵四邊形ADFE是矩形,
∴AE=DF,AD=EF,
∴△ABD≌△ECF,
∴BD=CF,∠ABD=∠ECF,
∴∠ACE=∠ECB-∠ACB=∠ABC-∠ACB=30°,
∴∠APE=2∠ACE=60°,
∴AP=AE=DF,
∴$\frac{DC-BD}{AP}$=$\frac{DC-CF}{AP}$=$\frac{DF}{AP}$=1.
故當(dāng)B,C運(yùn)動(dòng)時(shí),$\frac{DC-BD}{AP}$的值是不變,$\frac{DC-BD}{AP}$=1.
點(diǎn)評(píng) 本題考查了圓心角與圓周角的關(guān)系、勾股定義以及三角形全等的判定與性質(zhì)定理等,解題的關(guān)鍵是畫(huà)出圖形,借助于數(shù)形結(jié)合解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com