精英家教網(wǎng)如圖所示,AB、AC切⊙O于B、C,D為⊙O上一點(diǎn),且∠D=45°,若BC為10,則AB的長為
 
分析:連接OB,OC,可證明∠A=∠BOC=90°,再根據(jù)切線的性質(zhì)定理計(jì)算.
解答:精英家教網(wǎng)解:連接OB,OC
根據(jù)切線的性質(zhì)定理得∠ABO=∠ACO=90°,
∴∠A+∠BOC=180°;
∵∠D=45°,∠BOC=90°,
∴∠A=∠BOC=90°,
∴四邊形ABOC是正方形,
∵BC=10,
∴AB=5
2

故答案為5
2
點(diǎn)評:本題綜合運(yùn)用了切線的性質(zhì)定理、切線長定理、四邊形的內(nèi)角和定理、圓周角定理以及勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,AB,AC與⊙O相切于點(diǎn)B,C,∠A=50°,點(diǎn)P是圓上異于B,C的一動點(diǎn),則∠BPC的度數(shù)是
65°或115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB,AC是⊙O的弦,AD⊥BC于D,交⊙O于F,AE與⊙O的直徑,試問兩弦BE與CF的大小有何關(guān)系,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB、AC切⊙O于B、C,D為⊙O上一點(diǎn),且∠A=2∠D,若BC為10,則AB的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,AB,AC與⊙O相切于點(diǎn)B,C,點(diǎn)P是圓上異于B、C的一動點(diǎn),則∠BPC的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案