【題目】如圖,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分線交于E,D是AE延長線上一點,且∠BDC=120°.下列結(jié)論:①∠BEC=120°;②DB=DC;③DB=DE;④∠BDE=∠BCA.其中正確結(jié)論的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】分析:根據(jù)三角形內(nèi)角和等于180°求出∠ABC+∠ACB,再根據(jù)角平分線的定義求出∠EBC+∠ECB,然后求出∠BEC=120°,判斷①正確;過點D作DF⊥AB于F,DG⊥AC的延長線于G,根據(jù)角平分線上的點到角的兩邊的距離相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角邊角”證明△BDF和△CDG全等,根據(jù)全等三角形對應(yīng)邊相等可得BD=CD,得出②正確;再根據(jù)等邊對等角求出∠DBC=30°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和以及角平分線的定義求出∠DBE=∠DEB,根據(jù)等角對等邊可得BD=DE,判斷③正確;再求出B,C,E三點在以D為圓心,以BD為半徑的圓上,根據(jù)同弧所對的圓周角等于圓心角的一半可得∠BDE=2∠BCE=∠BCA,判斷④正確.
詳解:∵∠BAC=60°, ∴∠ABC+∠ACB=180°-60°=120°,
∵BE、CE分別為∠ABC、∠ACB的平分線, ∴∠EBC=∠ABC,∠ECB=∠ACB,
∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-60°=120°,故①正確;
如圖,過點D作DF⊥AB于F,DG⊥AC的延長線于G,
∵BE、CE分別為∠ABC、∠ACB的平分線, ∴AD為∠BAC的平分線,
∴DF=DG, ∴∠FDG=360°-90°×2-60°=120°, 又∵∠BDC=120°,
∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°, ∴∠BDF=∠CDG,
∴△BDF≌△CDG(ASA), ∴DB=CD,故②正確;
∴∠DBC=(180°-120°)=30°, ∴∠DBE=∠DBC+∠CBE=30°+∠CBE,
∵BE平分∠ABC,AE平分∠BAC, ∴∠ABE=∠CBE,∠BAE=∠BAC=30°,
根據(jù)三角形的外角性質(zhì),∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,
∴DB=DE,故③正確;
∵DB=DE=DC, ∴B,C,E三點在以D為圓心,以BD為半徑的圓上,
∴∠BDE=2∠BCE=∠BCA,故④正確;故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),設(shè)計開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程。為了了解學(xué)生選擇拓展性課程的情況,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)將條形圖補充完整;
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,-2,3,-4,小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有 種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知D是△ABC的邊AB上一點,CE∥AB,DE交AC于點O,且OA=OC,猜想線段CD與線段AE的大小關(guān)系和位置關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車載滿貨物一次可運貨11噸;用1輛A型車和2輛B型車載滿貨物一次可運貨13噸.根據(jù)以上信息, 解答下列問題:
(1)1輛A型車和l輛B型車都載滿貨物一次可分別運貨多少噸?
(2)某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都載滿貨物請用含有的式子表示,并幫該物流公司設(shè)計租車方案;
(3)在(2)的條件下,若A型車每輛需租金500元/次,B型車每輛需租金600元/次.請選出最省錢的租車方案,并求出最少租車費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為綠化環(huán)境,計劃購買甲、乙兩種樹苗共計n棵.有關(guān)甲、乙兩種樹苗的信息如圖所示:
(1)當(dāng)n=400時,如果購買甲、乙兩種樹苗共用27000元,那么甲、乙兩種樹苗各買了多少棵?
(2)實際購買這兩種樹苗的總費用恰好為27000元,其中甲種樹苗買了m棵.
①寫出m與n滿足的關(guān)系式;
②要使這批樹苗的成活率不低于92%,求n的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點為(1,-4),且經(jīng)過點B(3,0).
(Ⅰ)求該拋物線的解析式及拋物線與x軸的另一個交點A的坐標(biāo);
(Ⅱ)點P(m,t)為拋物線上的一個動點,點P關(guān)于原點的對稱點為P′.
①當(dāng)點P′落在該拋物線上時,求m的值;
②當(dāng)點P′落在第二象限內(nèi),P′A2取得最大值時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com