(2005溫州)在直線l上依次擺放著七個(gè)正方形(如圖所示),已知斜放置的三個(gè)正方形的面積分別是1、2、3,正放置的四個(gè)正方形的面積依次是、、、,則=________.

答案:4
解析:

全等三角形的性質(zhì)和勾股定理知


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2005•遵義)在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).設(shè)坐標(biāo)軸的單位長(zhǎng)度為1厘米,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1厘米/秒,且整點(diǎn)P作向上或向右運(yùn)動(dòng)(如圖所示).運(yùn)動(dòng)時(shí)間(秒)與整點(diǎn)(個(gè))的關(guān)系如下表:
整點(diǎn)P從原點(diǎn)O出發(fā)的時(shí)間(秒) 可以得到的整點(diǎn)P的坐標(biāo) 可以得到整點(diǎn)P的個(gè)數(shù)
1 (0,1),(1,0) 2
2 (0,2),(1,1),(2,0) 3
3 (0,3),(1,2),(2,1),(3,0) 4
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4秒時(shí),可以得到的整點(diǎn)P的個(gè)數(shù)為
5
5
個(gè);
(2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8秒時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連接這些整點(diǎn);
(3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)
20
20
秒時(shí),可到達(dá)整點(diǎn)(16,4)的位置;
(4)當(dāng)整點(diǎn)P(x,y)從點(diǎn)O出發(fā)30秒時(shí),整點(diǎn)P(x,y)恰好在直線y=2x-6上,求整點(diǎn)P(x,y)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•連云港)據(jù)某氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為th內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城?如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•溫州)如圖,在平面直角坐標(biāo)系中,正方形AOCB的邊長(zhǎng)為6,O為坐標(biāo)原點(diǎn),邊OC在x軸的正半軸上,邊OA在y軸的正半軸上,E是邊AB上的一點(diǎn),直線EC交y軸于F,且S△FAE:S四邊形AOCE=1:3.
(1)求出點(diǎn)E的坐標(biāo);
(2)求直線EC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•溫州)如圖,在平面直角坐標(biāo)系中,正方形AOCB的邊長(zhǎng)為6,O為坐標(biāo)原點(diǎn),邊OC在x軸的正半軸上,邊OA在y軸的正半軸上,E是邊AB上的一點(diǎn),直線EC交y軸于F,且S△FAE:S四邊形AOCE=1:3.
(1)求出點(diǎn)E的坐標(biāo);
(2)求直線EC的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案