【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點A順時針旋轉到Rt△ADE的位置,點E在斜邊AB上,連結BD,過點D作DF⊥AC于點F.
(1)如圖1,若點F與點A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,
①如圖2,當點F在線段CA的延長線上時,判斷線段AF與線段BE的數量關系,并說明理由;
②當點F在線段CA上時,設BE=x,請用含x的代數式表示線段AF.
【答案】
(1)
解:由旋轉得,∠BAC=∠BAD,
∵DF⊥AC,
∴∠CAD=90°,
∴∠BAC=∠BAD=45°,
∵∠ACB=90°,
∴∠ABC=45°,
∴AC=CB
(2)
解:①由旋轉得,AD=AB,
∴∠ABD=∠ADB,
∵∠DAF=∠ABD,
∴∠DAF=∠ADB,
∴AF∥BD,
∴∠BAC=∠ABD,
∵∠ABD=∠FAD
由旋轉得,∠BAC=∠BAD,
∴∠FAD=∠BAC=∠BAD= ×180°=60°,
由旋轉得,AB=AD,
∴△ABD是等邊三角形,
∴AD=BD,
在△AFD和△BED中,
,
∴△AFD≌△BED,
∴AF=BE,
②如圖,
由旋轉得,∠BAC=∠BAD,
∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,
由旋轉得,AD=AB,
∴∠ABD=∠ADB=2∠BAD,
∵∠BAD+∠ABD+∠ADB=180°,
∴∠BAD+2∠BAD+2∠BAD=180°,
∴∠BAD=36°,
設BD=y,作BG平分∠ABD,
∴∠BAD=∠GBD=36°
∴AG=BG=BD=y,
∴DG=AD﹣AG=AD﹣BG=AD﹣BD,
∵∠BDG=∠ADB,
∴△BDG∽△ADB,
∴ .
∴ = ﹣1,即( )2﹣ ﹣1=0,
∴ ,
∵∠FAD=∠EBD,∠AFD=∠BED,
∴△AFD∽△BED,
∴ ,
∴AF= = x
【解析】(1)由旋轉得到∠BAC=∠BAD,而DF⊥AC,從而得出∠ABC=45°,最后判斷出△ABC是等腰直角三角形;(2)①由旋轉得到∠BAC=∠BAD,再根據∠DAF=∠DBA,從而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;②根據題意畫出圖形,先求出角度,得到△ABD是頂角為36°的等腰三角形,再用相似求出, ,最后判斷出△AFD∽△BED,代入即可.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點,O是AB上一點,經過A、D兩點的⊙O分別交AB、AC于點E、F.
(1)用尺規(guī)補全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當AD= ,∠CAD=30°時,求劣弧AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)了一種新藥,在試驗藥效時發(fā)現,如果成人按規(guī)定劑量服用,那么服藥后2小時血液中含藥量最高,達到每毫升6微克,接著就逐步衰減,10小時后血液中含藥量為每毫升3微克,每毫升血液中含藥量(微克)隨時間(小時)的變化如圖所示,那么成年人規(guī)定劑量服藥后:
(1)y與x之間的函數關系式.
(2)如果每毫升血液中含藥量在4微克或4微克以上時,治療疾病才是有效的,那么這個有效時
間是多長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點O在直線MN上,∠AOB=90°,OC平分∠MOB.
(1)若∠AOC=則∠BOC=_______,∠AOM=_______,∠BON=_________;
(2)若∠AOC=則∠BON=_______(用含有的式子表示);
(3)將∠AOB繞著點O順時針轉到圖2的位置,其他條件不變,若∠AOC=(為鈍角),求∠BON的度數(用含的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若點A(﹣1,2),B(2,﹣3)在直線y=kx+b上,則函數y= 的圖象在( )
A.第一、三象限
B.第一、二象限
C.第二、四象限
D.第二、三象限
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD,AD=9,AB=6,若點G、H、M、N分別在AB、CD、AD、BC上,線段MN與GH交于點K.若∠GKM=45°,NM=3 ,則GH= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com