【題目】如圖,已知坐標(biāo)系中點(diǎn)A(2,-1),B(7,-1),C(3,-3).
(1)判定△ABC的形狀;
(2)設(shè)△ABC關(guān)于x軸的對(duì)稱(chēng)圖形是△A1B1C1,若把△A1B1C1的各頂點(diǎn)的橫坐標(biāo)都加2.縱坐標(biāo)不變,則△A1B1C1的位置發(fā)生什么變化?若最終位置是△A2B2C2,求C2點(diǎn)的坐標(biāo);
(3)試問(wèn)在x軸上是否存在一點(diǎn)P,使PC-PB最大,若存在,求出PC-PB的最大值及P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)△ABC是直角三角形;(2)圖像向右平移2個(gè)單位,C2坐標(biāo)為(5,2);(3)y=x-;P(9,0).
【解析】
(1)計(jì)算出A,B,A,比較數(shù)量關(guān)系即可;
(2)把△的各頂點(diǎn)的橫坐標(biāo)都加2.縱坐標(biāo)不變,則圖形向右移動(dòng)兩個(gè)單位;
(3)連接C,與x軸的交點(diǎn)即為P,設(shè)BC對(duì)應(yīng)一次函數(shù)為y=kx+b,聯(lián)立方程組即可求出點(diǎn)P坐標(biāo).
本題解析:
解:(1)∵AC2=22+12=5,BC2=42+22=20,AB2=52
∴AC2+BC2=AB2
∴△ABC是直角三角形
(2)圖像向右平移2個(gè)單位,C2坐標(biāo)為(5,2)
(3)存在.連接CB1,與x軸的交點(diǎn)即為P.
理由:設(shè)BC對(duì)應(yīng)一次函數(shù)為y=kx+b
∵C(3,-3) B(7,-1)
∴
∴
∴y=x-
令y=0得x=9
∴P(9,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車(chē)供游客租賃使用,假定每輛觀光車(chē)一天內(nèi)最多只能出租一次,且每輛車(chē)的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營(yíng)運(yùn)規(guī)律如下:當(dāng)x不超過(guò)100元時(shí),觀光車(chē)能全部租出;當(dāng)x超過(guò)100元時(shí),每輛車(chē)的日租金每增加5元,租出去的觀光車(chē)就會(huì)減少1輛.已知所有觀光車(chē)每天的管理費(fèi)是1100元.
(1)優(yōu)惠活動(dòng)期間,為使觀光車(chē)全部租出且每天的凈收入為正,則每輛車(chē)的日租金至少應(yīng)為多少元?(注:凈收入=租車(chē)收入﹣管理費(fèi))
(2)當(dāng)每輛車(chē)的日租金為多少元時(shí),每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,B、C、D三點(diǎn)在同一條直線(xiàn)上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。
A. ∠A與∠D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線(xiàn)BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.
(1)求證:BF=DF;
(2)如圖2,過(guò)點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連結(jié)FG交BD于點(diǎn)O.
①求證:四邊形BFDG是菱形;
②若AB=3,AD=4,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形的周長(zhǎng)為28cm,其中的一邊長(zhǎng)是另一邊長(zhǎng)的倍,求這個(gè)等腰三角形各邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點(diǎn)D,交AB的延長(zhǎng)線(xiàn)于點(diǎn)E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時(shí),求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠ACD是△ABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于點(diǎn)E.
(1)求∠E的度數(shù).
(2)請(qǐng)猜想∠A與∠E之間的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點(diǎn)連線(xiàn)EF為邊正方形EFGH的周長(zhǎng)為( )
A.
B.2
C.
+1
D.2 +1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com