如圖,E為△ABC的重心,ED=3,則AD=________.

9
分析:根據(jù)重心的性質(zhì)可求得AE=6,即可求得AD.
解答:∵E為△ABC的重心,ED=3,
∴AE=2ED=6,
∴AD=AE+ED=6=3=9.
故答案為:9.
點評:此題考查了重心.性質(zhì):三角形的重心到頂點的距離是它到對邊中點的距離的2倍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、如圖,⊙O為△ABC的外接圓,BC為直徑,AC=AB,則∠D的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖,AD為△ABC的高,E為AC上一點,BE交AD于F,且有BF=AC,F(xiàn)D=CD,那么BE⊥AC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O為△ABC的內(nèi)切圓,∠C=90度,OA的延長線交BC于點D,AC=4,CD=1,則⊙O的半徑等于(  )
A、
4
5
B、
5
4
C、
3
4
D、
5
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,⊙O為△ABC的外接圓,且∠A=30°,AB=8cm,BC=5cm,則⊙O的半徑=
5
cm,點O到AB的距離為
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,G為△ABC的重心,其中∠C=90°,D在AB上,GD⊥AB.若AB=29,AC=20,BC=21,則GD的長度為何?( 。
A、7
B、14
4
9
C、
140
29
D、
420
29

查看答案和解析>>

同步練習冊答案