【題目】已知一次函數(shù)y=(2m-3)x+m+1經(jīng)過(guò)點(diǎn)A(1,4)
(1)求m的值;
(2)畫出此一次函數(shù)的圖象;
(3)若一次函數(shù)交y軸于點(diǎn)B,求△OAB的面積.
【答案】(1)m=2;(2)見(jiàn)解析;(3).
【解析】
(1)把點(diǎn)A(1,4)代入一次函數(shù)y=(2m-3)x+m+1即可求出m的值;
(2)已知點(diǎn)A(1,4),再令x=0,y=3,根據(jù)兩點(diǎn)確定一條直線,畫出函數(shù)圖象即可;
(3)過(guò)點(diǎn)A作AC⊥y軸于點(diǎn)C,求得AC=1,y=x+3與y軸交于點(diǎn)B(0,3),求得OB=3,根據(jù)△OAB的面積即可求得;
解:
(1)∵一次函數(shù)y=(2m-3)x+m+1經(jīng)過(guò)點(diǎn)A(1,4),
∴4=2m-3+m+1,
解得:m=2,
∴一次函數(shù)的解析式為:y=x+3;
(2)如圖:
(3)如圖:過(guò)點(diǎn)A作AC⊥y軸于點(diǎn)C,
則AC=1,
∵y=x+3與y軸的交點(diǎn)為:令x=0,求得y=3,
∴y=x+3與y軸的交點(diǎn)交于點(diǎn)B(0,3),
∴OB=3,
∴△OAB的面積;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國(guó)早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量小雁塔的高度,由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,因此經(jīng)過(guò)研究需要進(jìn)行兩次測(cè)量,于是在陽(yáng)光下,他們首先利用影長(zhǎng)進(jìn)行測(cè)量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測(cè)得此時(shí)木棒的影長(zhǎng)DE=2.4米;然后,小希在BD的延長(zhǎng)線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測(cè)得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測(cè)量數(shù)據(jù),求小雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,AB、AC是圓O的兩條弦,AB=AC,過(guò)圓心O作OH⊥AC于點(diǎn)H.
(1)如圖1,求證:∠B=∠C;
(2)如圖2,當(dāng)H、O、B三點(diǎn)在一條直線上時(shí),求∠BAC的度數(shù);
(3)如圖3,在(2)的條件下,點(diǎn)E為劣弧BC上一點(diǎn),CE=6,CH=7,連接BC、OE交于點(diǎn)D,求BE的長(zhǎng)和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高科技發(fā)展公司投資500萬(wàn)元,成功研制出一種市場(chǎng)需求量較大的高科技替代產(chǎn)品,并投入資金1500萬(wàn)元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過(guò)程中發(fā)現(xiàn):當(dāng)銷售單價(jià)定為100元時(shí),年銷售量為20萬(wàn)件;銷售單價(jià)每增加10元,年銷售量將減少1萬(wàn)件,設(shè)銷售單價(jià)為x(元),年銷售量為y(萬(wàn)件),年獲利(年獲利=年銷售額一生產(chǎn)成本—投資)為z(萬(wàn)元).
(1)試寫出y與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(2)試寫出z與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(3)公司計(jì)劃,在第一年按年獲利最大確定銷售單價(jià)進(jìn)行銷售;到第二年年底獲利不低于1130萬(wàn)元,請(qǐng)借助函數(shù)的大致圖象說(shuō)明:第二年的銷售單價(jià)x(元)應(yīng)確定在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校組織團(tuán)員舉行申奧成功宣傳活動(dòng),從學(xué)校騎車出發(fā),先上坡到達(dá)A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時(shí),上、下坡速度仍保持不變,在A地仍要宣傳8分鐘,那么他們從B地返回學(xué)校用的時(shí)間是( )
A. 45.2分鐘 B. 48分鐘 C. 46分鐘 D. 33分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點(diǎn),E、F分別是AC、BC上兩點(diǎn),且ED⊥FD.
(1)如圖1,若E是AC中點(diǎn),則BF=______,EF=______,AE2+BF2______EF2(填“>,<或=”);
(2)如圖2,若點(diǎn)E是AC邊上任意一點(diǎn),AE2+BF2_____EF2(填“>,<或=”),請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E在CA延長(zhǎng)上,(2)中三條線段之間的關(guān)系是否成立?請(qǐng)畫圖說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD和正方形BEFG中,點(diǎn)A,B,E在同一條直線上,連接DF,且P是線段DF的中點(diǎn),連接PG,PC.
(1)如圖1中,PG與PC的位置關(guān)系是 ,數(shù)量關(guān)系是 ;
(2)如圖2將條件“正方形ABCD和正方形BEFG”改為“矩形ABCD和矩形BEFG”其它條件不變,求證:PG=PC;
(3)如圖3,若將條件“正方形ABCD和正方形BEFG”改為“菱形ABCD和菱形BEFG”,點(diǎn)A,B,E在同一條直線上,連接DF,P是線段DF的中點(diǎn),連接PG、PC,且∠ABC=∠BEF=60°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過(guò)點(diǎn)A作AB⊥x軸,垂足為點(diǎn)A,過(guò)點(diǎn)C作CB⊥y軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.
(1)線段AB,BC,AC的長(zhǎng)分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開(kāi),折痕DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.
請(qǐng)從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長(zhǎng);
②在y軸上,是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
B:①求線段DE的長(zhǎng);
②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a、b滿足(a﹣2)2+=0.
(1)求直線AB的解析式;
(2)若點(diǎn)M為直線y=mx上一點(diǎn),且△ABM是等腰直角三角形,求m值;
(3)過(guò)A點(diǎn)的直線y=kx﹣2k交y軸于負(fù)半軸于P,N點(diǎn)的橫坐標(biāo)為﹣1,過(guò)N點(diǎn)的直線y=x﹣交AP于點(diǎn)M,試證明的值為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com