【題目】如圖,已知點(diǎn)P到BE,BD,AC的距離恰好相等,則點(diǎn)P的位置:①在∠B的平分線上;②在∠DAC的平分線上;③在∠ECA的平分線上;④恰是∠B,∠DAC,∠ECA三條角平分線的交點(diǎn),上述結(jié)論中,正確結(jié)論的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
利用平分線的判定進(jìn)行分析.由已知點(diǎn)P到BE,BD,AC的距離恰好相等進(jìn)行思考,首先到到兩邊距離相等,得出結(jié)論,然后另外兩邊再得結(jié)論,如此這樣,答案可得.
解:由角平分線性質(zhì)的逆定理,
∵已知點(diǎn)P到BE,BD的距離相等
∴點(diǎn)P在∠B的平分線上;
∵點(diǎn)P到BD,AC的距離相等
∴點(diǎn)P在∠DAC的平分線上
∵點(diǎn)P到BE, AC的距離相等
∴點(diǎn)P在∠ECA的平分線上
∴點(diǎn)P恰是∠B,∠DAC,∠ECA三條角平分線的交點(diǎn),
可得①②③④都正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“朗讀者”節(jié)目的影響下,某中學(xué)開展了“好書伴我成長”的讀書活動(dòng),為了解3月份七年級(jí)300名學(xué)生讀書情況,隨機(jī)調(diào)查了七年級(jí)50個(gè)學(xué)生讀書的冊(cè)數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表所示:
冊(cè)數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 4 | 12 | 16 | 17 | 1 |
關(guān)于這組數(shù)據(jù),下列說法正確的是( 。
A. 眾數(shù)是 17 B. 平均數(shù)是 2 C. 中位數(shù)是 2 D. 方差是 2
查看答案和解析>>
科目:
來源: 題型:【題目】某校計(jì)劃組織師生共310人參加一次野外研學(xué)活動(dòng),如果租用6輛大客車和5輛小客車恰好全部坐滿.已知每輛大客車的乘客座位數(shù)比小客車多15個(gè).
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動(dòng)的人數(shù)增加了20人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為將所有參加活動(dòng)的師生裝載完成,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣2,3),B(1,),點(diǎn)P為x軸上一點(diǎn),使得△PAB的面積等于,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC⊥CD,將線段AD繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)后交AC于點(diǎn)E,交BC于點(diǎn)F.
(1)若∠CAD=30°,線段AD繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)45°,且CE=1,求AD;
(2)若∠CAD=45°,線段AD繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)30°,點(diǎn)M是線段DF上任意一點(diǎn)(M不與D重合),連接CM,將線段CM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°得到線段CN,連接AN交射線DE于點(diǎn)P,點(diǎn)G、H分別是AD、DE的中點(diǎn),求證:CD=CE+2CP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,E是CD延長線上的一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.
(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l的函數(shù)表達(dá)式為y=x+6,且l與x軸、y軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)Q從B點(diǎn)開始在線段BA上以每秒2個(gè)單位的速度向點(diǎn)A移動(dòng),同時(shí)動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒1個(gè)單位的速度向O點(diǎn)移動(dòng),設(shè)點(diǎn)Q、P移動(dòng)時(shí)間為t秒.
(1)求點(diǎn)A、B的坐標(biāo)
(2)當(dāng)以點(diǎn)A、P、Q為頂點(diǎn)的三角形是等腰三角形時(shí),求時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列方程及其解的特征:
(1)的解為;
(2)的解為,;
(3)的解為,;
解答下列問題:
請(qǐng)猜想:方程的解為________;
請(qǐng)猜想:關(guān)于的方程________的解為,;
下面以解方程為例,驗(yàn)證中猜想結(jié)論的正確性.
解:原方程可化為.
(下面請(qǐng)大家用配方法寫出解此方程的詳細(xì)過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN經(jīng)過正方形ABCD的頂點(diǎn)D且不與正方形的任何一邊相交,AM⊥MN于M,CN⊥MN于N,BR⊥MN于R。
(1)求證:△ADM≌△DCN
(2)求證:MN=AM+CN
(3)試猜想BR與MN的數(shù)量關(guān)系,并證明你的猜想
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com