【題目】如圖,在平面直角坐標(biāo)系中,為直線與直線的交點,點在線段上,.
(1)求點的坐標(biāo);
(2)若為線段上一動點(不與重合),的橫坐標(biāo)為,的面積為,請求出與的函數(shù)關(guān)系式;
【答案】(1);(2)S=.
【解析】
(1)先利用A,B坐標(biāo)求出直線AB的解析式,再求出與直線y=2x的交點坐標(biāo)C即可;(2)設(shè)D(t,2t)利用勾股定理求出D(1,2),再求出AD的解析式為:y=-x+3,由P(x,-x+3),再求出S△POD的函數(shù)關(guān)系式;
(1)∵A的坐標(biāo)是(3,0),B(0,6)
∴直線AB的解析式y=-2x+6
∵C為直線y=2x與直線AB的交點,
∴ 解得
∴C;
(2)設(shè)D(t,2t)
∵t2+4t2=5
∴t=1
故D(1,2)
AD的解析式為:y=-x+3
P(x,-x+3)
∴S△POD==
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,,點為的中點.
(1)如圖1,、分別是、上的點,且,求證:為等腰直角三角形.
(2)如圖2,若、分別為,延長線上的點,仍有,其他條件不變,那么,是否仍為等腰直角三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(生活常識)
射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等。如圖 1,MN 是平面鏡,若入射光線 AO 與水平鏡面夾角為∠1,反射光線 OB 與水平鏡面夾角為∠2,則∠1=∠2 .
(現(xiàn)象解釋)
如圖 2,有兩塊平面鏡 OM,ON,且 OM⊥ON,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD.求證 AB∥CD.
(嘗試探究)
如圖 3,有兩塊平面鏡 OM,ON,且∠MON =55 ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB 與 CD 相交于點 E,求∠BEC 的大小.
(深入思考)
如圖 4,有兩塊平面鏡 OM,ON,且∠MON α ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB 與 CD 所在的直線相交于點 E,∠BED=β , α 與 β 之間滿足的等量關(guān)系是 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構(gòu)成四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點E在直線AB與CD之間,連結(jié)AE、BE,試說明∠BAE+∠DCE=∠AEC;
(探究)當(dāng)點E在如圖②的位置時,其他條件不變,試說明∠AEC+∠BAE+∠DCE=360°;
(應(yīng)用)點E、F、G在直線AB與CD之間,連結(jié)AE、EF、FG和CG,其他條件不變,如圖③,若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具經(jīng)銷商用32000元購進(jìn)了一批玩具,上市后恰好全部售完;該經(jīng)銷商又用68000元購進(jìn)第二批這種玩具,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價多了10元.
(1)該經(jīng)銷商第二次購進(jìn)這種玩具多少套?
(2)由于第二批玩具進(jìn)價上漲,經(jīng)銷商按第一批玩具售價銷售200套后,準(zhǔn)備調(diào)整售價,發(fā)現(xiàn)若每套漲價1元,則會少賣5套,已知第一批玩具售價為200元.設(shè)第二批玩具銷售200套后每套漲價a元,第二批賣出的玩具總利潤w元,問當(dāng)a取多少時,才能使售出的玩具利潤w最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ADC=130°,∠ABC=∠ADC,BF、DE分別平分∠ABC與∠ADC,交對邊于F、E,且∠ABF=∠AED,過E作EH⊥AD交AD于H。
(1)在圖中作出線段BF和EH(不要求尺規(guī)作圖);
(2)求∠AEH的大小。
小亮同學(xué)根據(jù)條件進(jìn)行推理計算,得出結(jié)論,請你在括號內(nèi)注明理由。
證明:∵BF、DE分別平分∠ABC與∠ADC,(已知)
∴∠ABF=∠ABC,∠CDE=∠ADC。( )
∵∠ABC=∠ADC,(已知)
∴∠ABF=∠CDE。(等式的性質(zhì))
∵∠ABF=∠AED,(已知)
∴∠CDE=∠AED。( )
∴AB∥CD。( )
∵∠ADC=130°(已知)
∴∠A=180°-∠ADC=50°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵EH⊥AD于H(已知)
∴∠EHA=90°(垂直的定義)
∴在Rt△AEH中,∠AEH=90°-∠A( )=40°。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com