【題目】在平面直角坐標系中,已知直線y=﹣x+4與x軸、y軸分別交于A、B兩點,點C(0,n)是y軸上一點.把坐標平面沿直線AC折疊,使點B剛好落在x軸上,則點C的坐標為______.
【答案】(0,1.5)或(0,﹣6)
【解析】
分兩種情況討論:①當B′在x軸負半軸上時,過C作CD⊥AB于D,先求出A,B的坐標,分別為(3,0),(0,4),得到AB的長,再根據(jù)折疊的性質(zhì)得到AC平分∠OAB,得到CD=CO=n,DA=OA=3,則DB=5-3=2,BC=4-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.②當B'在x軸正半軸上時,設OC=x,在Rt△OCB′中,利用勾股定理可求出x的值.
①若B′在x軸左半軸,過C作CD⊥AB于D,如圖1,
對于直線,令x=0,得y=4;令y=0,x=3,
∴A(3,0),B(0,4),即OA=3,OB=4,
∴AB=5,
又∵坐標平面沿直線AC折疊,使點B剛好落在x軸上,
∴AC平分∠OAB,
∴CD=CO=n,則BC=4n,
∴DA=OA=3,
∴DB=53=2,
在Rt△BCD中,
∴解得n=1.5,
∴點C的坐標為(0,1.5).
②若B′在x軸右半軸,如圖,
則AB′=AB=5,
設OC=x,則CB′=CB=x+4,OB′=OA+AB′=3+5=8,
在Rt△OCB′中, ,即
解得:x=6,即可得此時點C的坐標為(0,6).
故答案為:(0,1.5)或(0,6).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠BAD=90°,對角線BD⊥DC, 如果AD=4,BC=9,則BD的長=___________ 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,點是射線上一動點(與點不重合),分別平分和,分別交射線于點
若點運動到某處時,恰有,此時與有何位置關系?請說明理由.
在點運動的過程中,與之間的關系是否發(fā)生變化?若不變,請寫出它們的關系并說明理由;若變化,請寫出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,將理由補充完整.
如圖,于,于,,求證:.
證明:∵,(已知)
∴(垂直的定義)
∴(________________________)
∴(________________________)
∵(已知)
又∵(________________________)
∴(________________________)
∴(________________________)
∴(________________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā).設慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關系.根據(jù)題中所給信息解答以下問題:
(1)甲、乙兩地之間的距離為____km;圖中點C的實際意義為:______;慢車的速度為_______,快車的速度為______;
(2)求線段BC所表示的y與x之間的函數(shù)關系式,以及自變量x的取值范圍;
(3)若在第一列快車與慢車相遇時,第二列快車從乙地出發(fā)駛往甲地,速度與第一列快車相同.請直接寫出第二列快車出發(fā)多長時間,與慢車相距200km.
(4)若第三列快車也從乙地出發(fā)駛往甲地,速度與第一列快車相同.如果第三列快車不能比慢車晚到,求第三列快車比慢車最多晚出發(fā)多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】特例研究:如圖,等邊的邊長為8,求等邊的高.
經(jīng)驗提升:
如圖,在中,,點P為射線BC上的任一點,過點P作,,垂足分別為D、E,過點C作,垂足為補全圖形,判斷線段PD,PE,CF的數(shù)量關系,并說明理由.
綜合應用:
如圖,在平面直角坐標系中有兩條直線:,:,若線段BC上有一點M到的距離是1,請運用中的結論求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線 經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(﹣6,4),則△AOC的面積為v .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com