【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1小時后到達B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺風(fēng)到來之前用最短時間到達M處,漁船立刻加速以80海里/小時的速度繼續(xù)航行多少小時即可到達?(結(jié)果保留根號)

【答案】小時.

【解析】

如圖,過點PPQABAB延長線于點Q,過點MMNABAB延長線于點N,通過解直角AQP、直角BPQ求得PQ的長度,即MN的長度,然后通過解直角BMN求得BM的長度,則易得所需時間.

解:如圖,過點PPQABAB延長線于點Q,過點MMNABAB延長線于點N,

在直角AQP中,∠PAQ=45°,則AQ=PQ=60×1+BQ=60+BQ(海里)

所以BQ =PQ-60

在直角BPQ中,∠BPQ=30°,則BQ=PQtan30°=PQ(海里),

所以PQ-60=PQ

所以PQ=30(3+)(海里)

所以MN=PQ=30(3+)(海里)

在直角BMN中,∠MBN=30°,

所以BM=2MN=60(3+)(海里)

所以t==(小時)

故答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EF與⊙O相切于點C,點A為⊙O上異于點C的一動點,⊙O的半徑為4,ABEF于點B,設(shè)ACF=α(0°<α<180°).

1)若α=,求證:四邊形OCBA為正方形;

2)若AC―AB=1,求AC的長;

3)當AC―AB取最大值時,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線ACBD相交于點O,∠ACB的平分線分別交AB、BD于點M、N,若AD4,則線段AM的長為( 。

A. 2B. 2C. 4D. 84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點PBC邊上一動點,連結(jié)AP,AP的垂直平分線交BD于點G,交 AP于點E,在P點由B點到C點的運動過程中,APG的大小變化情況是( )

A. 變大 B. 先變大后變小 C. 先變小后變大 D. 不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtPMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCDAB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令RtPMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設(shè)移動x秒后,矩形ABCDPMN重疊部分的面積為y,則yx的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )

A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+3的圖象經(jīng)過A(﹣1,0)、C3,0)、并且與y軸相交于點B,點P是直線BC上方的拋物線上的一動點,PQy軸交直線BC于點Q

1)求此二次函數(shù)的表達式;

2)求線段PQ的最大值;

3)在拋物線的對稱軸上,是否存在點M,使△MAB為等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍自制的勻速直線運動遙控車模型甲、乙兩車同時分別從、出發(fā),沿直線軌道同時到達處,已知乙的速度是甲的速度的1.5倍,甲、乙兩遙控車與處的距離、(米)與時間(分鐘)的函數(shù)關(guān)系如圖所示,則下列結(jié)論中:①的距離為120米;②乙的速度為60/分;③的值為;④若甲、乙兩遙控車的距離不少于10米時,兩車信號不會產(chǎn)生互相干擾,則兩車信號不會產(chǎn)生互相干擾的的取值范圍是,其中正確的有( )個

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點A;

(2)若AEBC,BC=2,AC=2,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案