【題目】如圖,在四邊形ABCD中, E、F、G、H分別是邊ABBC、CDDA的中點,若AC=BD,且EG2+FH2=16,則AC的長為________

【答案】4

【解析】分析:根據(jù)三角形的中位線定理和菱形的判定,可得順次連接對角線相等的四邊形各邊中點所得四邊形是菱形根據(jù)菱形的性質得到EGHF,再由勾股定理得出EH的長,從而得到答案

詳解如圖,EGFH相交于點O

E、FG、H分別是線段AB、BC、CDAD的中點,EH、FG分別是△ABD、BCD的中位線EF、HG分別是△ACDABC的中位線根據(jù)三角形的中位線的性質知,EH=FG=BD,EF=HG=AC

又∵AC=BD,EH=FG=EF=HG,∴四邊形EFGH是菱形,∴EGHF,EO=EGOH=HF,∴EF=EH== ===2,∴AC=2EF=4

故答案為:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們都知道無限不循環(huán)小數(shù)是無理數(shù),而無限循環(huán)小數(shù)是可以化成分數(shù)的。例如(3為循環(huán)節(jié))是可以化成分數(shù)的,方法如下:

②-①

所以可以化成分數(shù)為

請你閱讀上面材料完成下列問題:

(1))化成分數(shù)是 .

(2)請你將)化為分數(shù).

(3)請你將)化為分數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點E是射線CD上的一個動點,把△BCE沿BE折疊,點C的對應點為F.

(1)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;

(2)若點F剛好落在線段AB的垂直平分線上時,求線段CE的長;

(3)當射線AF交線段CD于點G時,請直接寫出CG的最大值 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】交通工程學理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個概念描述車流的基本特征。其中流量q(輛/小時)指單位時間內通過道路指定斷面的車輛數(shù);速度v(千米/小時)指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長度內的車輛數(shù),為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間的部分數(shù)據(jù)如下表:

速度v(千米/小時)

5

10

20

32

40

48

流量q(輛/小時)

550

1000

1600

1792

1600

1152


(1)根據(jù)上表信息,下列三個函數(shù)關系式中,刻畫q,v關系最準確的是(只需填上正確答案的序號)①
(2)請利用(1)中選取的函數(shù)關系式分析,當該路段的車流速為多少時,流量達到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請結合(1)中選取的函數(shù)關系式繼續(xù)解決下列問題:
①市交通運行監(jiān)控平臺顯示,當 時道路出現(xiàn)輕度擁堵,試分析當車流密度k在什么范圍時,該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設前后兩車車頭之間的距離d(米)均相等,求流量q最大時d的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題

(1)-5.4+0.2-0.6+1.8

(2) (-26.54)+(-6.4)+18.54+6.4

(3)

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)某校八年級學生全部參加初二生物地理會考,從中抽取了部分學生的生物考試成績,將他們的成績進行統(tǒng)計后分為A、B、C、D四個等級,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)抽取了__名學生成績;

(2)請把頻數(shù)分布直方圖補充完整;

(3)扇形統(tǒng)計圖中A等級所在的扇形的圓心角度數(shù)是__;

(4)若A、B、C三個等級為合格,該校初二年級有900名學生,估計全年級生物合格的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD上一點,PQ垂直平分BE,分別交AD、BEBC于點P、OQ,連接BPEQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,FAB的中點,OF =4,求菱形BPEQ的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x是正實數(shù),我們用{x}表示不小于x的最小正整數(shù),如{0.7}=1,{2}=2,{3.1}=4,在此規(guī)定下任一正實數(shù)都能寫成如下形式:x={x}-m,其中O≤m<l.

(1)直接寫出{x}x,x+1的大小關系:

(2)根據(jù)(1)中的關系式,求滿足{2x-1}=3x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第個圖案中有4個三角形,第個圖案中有6個三角形,第個圖案中有8個三角形,,按此規(guī)律排列下去,則第個圖案中三角形的個數(shù)為( )

A. 12 B. 14 C. 16 D. 18

查看答案和解析>>

同步練習冊答案