【題目】已知m是6的相反數(shù),n比m的相反數(shù)小2,則m-n=_______.

【答案】-10

【解析】試題分析:首先根據(jù)題意求出M、N的值,然后計(jì)算.因?yàn)?/span>M6的相反數(shù),所以M=6;NM的相反數(shù)小2,則N=62=4,所以MN=64=10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)A、B兩種產(chǎn)品其單價(jià)隨市場變化而做相應(yīng)調(diào)整,營銷人據(jù)前三次價(jià)變化的情況,繪制了如下統(tǒng)計(jì)表及不整的折線圖.

并求得A產(chǎn)品三次價(jià)的平均數(shù)和方差:

A=5.9;s2A=[6-5.925.2-5.926.5-5.92]= .

1補(bǔ)全中B產(chǎn)品單價(jià)變化的折線圖. B產(chǎn)品第三次的單價(jià)比上一次的價(jià)降低了 %;

2求B產(chǎn)品三次單價(jià)的方差,并比較種產(chǎn)品的單價(jià)波動(dòng)小;

3該廠決定第四次調(diào)價(jià),A產(chǎn)品的單價(jià)仍為6.5元/件,B產(chǎn)品的價(jià)比3元/件上調(diào)m%m>0,使得A產(chǎn)品這四次單價(jià)的中位數(shù)是B產(chǎn)品四次單價(jià)中位數(shù)的2倍少1,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖擺放,分別延長DA和QP交于點(diǎn)O,且DOQ=60°,OQ=OD=3,OP=2,OA=AB=1,讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點(diǎn)O按逆時(shí)針方向開始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).

發(fā)現(xiàn):

(1)當(dāng)α=0°,即初始位置時(shí),點(diǎn)P 直線AB上(選填“在”或“不在”).

當(dāng)α= 時(shí),OQ經(jīng)過點(diǎn)B;

(2)在OQ旋轉(zhuǎn)過程中,α= 時(shí),點(diǎn)P,A間的距離最?PA最小值為

(3)探究當(dāng)半圓K與矩形ABCD的邊相切時(shí),求sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度αα90°),得到正方形CDEFED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CHCG

1)求證:CBG≌△CDG;

2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;

3)連結(jié)BDDA、AEEB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子中放有四張分別寫有數(shù)字1、2、3、4的紅色卡片和三張分別寫有數(shù)字1、2、3的藍(lán)色卡片,卡片除顏色和數(shù)字外其它完全相同.

(1)從中任意抽取一張卡片,則該卡片上寫有數(shù)字1的概率是 ;

(2)將3張藍(lán)色卡片取出后放入另外一個(gè)不透明的盒子內(nèi),然后在兩個(gè)盒子內(nèi)各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍(lán)色卡片上的數(shù)字作為個(gè)位數(shù)組成一個(gè)兩位數(shù),求這個(gè)兩位數(shù)大于22的概率.(請(qǐng)利用樹狀圖或列表法說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)畢業(yè)生響應(yīng)國家“自主創(chuàng)業(yè)”的號(hào)召,投資開辦了一個(gè)裝飾品商店.該店采購進(jìn)一種今年新上市的飾品進(jìn)行了30天的試銷售,購進(jìn)價(jià)格為20元/件.銷售結(jié)束后,得知日銷售量P(件)與銷售時(shí)間x(天)之間有如下關(guān)系:P=﹣2x+80(1≤x≤30,且x為整數(shù));又知前20天的銷售價(jià)格Q1(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q1=(1≤x≤20,且x為整數(shù)),后10天的銷售價(jià)格Q2(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q2=45(21≤x≤30,且x為整數(shù)).

(1)試寫出該商店前20天的日銷售利潤R1(元)和后10天的日銷售利潤R2(元)分別與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;

(2)請(qǐng)問在這30天的試銷售中,哪一天的日銷售利潤最大?并求出這個(gè)最大利潤.

注:銷售利潤=銷售收入﹣購進(jìn)成本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各進(jìn)行10次射擊比賽,平均成績均為9環(huán),方差分別是:S22,S24,則射擊成績較穩(wěn)定的是_____(選填“甲”或“乙”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將方程2x33x2變形后,得2x3x23,根據(jù)是(  )

A. 等式的基本性質(zhì)1 B. 等式的基本性質(zhì)2

C. 合并同類項(xiàng)的法則 D. 以上均不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,求該電線桿PQ的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案