實驗與探究
(1)在圖1、圖2、圖3中,給出平行四邊形ABCD的頂點A、B、D的坐標(biāo),寫出圖1、圖2、圖3中的頂點C的坐標(biāo),它們分別是
(5,2)、(e+c,d)
(5,2)、(e+c,d)
,
(e+c-a,d)
(e+c-a,d)
.
(2)在圖4中,給出平行四邊形ABCD的頂點A,B,D的坐標(biāo)(如圖所示),求出頂點C的坐標(biāo)(C點坐標(biāo)用含a,b,c,d,e,f的代數(shù)式表示);
歸納與發(fā)現(xiàn)
(3)通過對圖1、圖2、圖3、圖4的觀察和頂點C的坐標(biāo)的探究,你會發(fā)現(xiàn):無論平行四邊形ABCD處于直角坐標(biāo)系中哪個位置,當(dāng)其頂點C坐標(biāo)為(m,n)(如圖4)時,則四個頂點的橫坐標(biāo)a,c,m,e之間的等量關(guān)系為
m=c+e-a
m=c+e-a
;縱坐標(biāo)b,d,n,f之間的等量關(guān)系為
n=d+f-b
n=d+f-b
(不必證明);
運用與推廣
(4)在同一直角坐標(biāo)系中有雙曲線
y=-和三個點
G(-c,c),S(c,c),H(2c,0)(其中c>0).問當(dāng)c為何值時,該雙曲線上存在點P,使得以G,S,H,P為頂點的四邊形是平行四邊形?并求出所有符合條件的P點坐標(biāo).